Menu Close

Find-the-number-of-all-possible-different-words-into-which-the-word-INTERFERE-can-be-converted-by-change-of-place-of-letters-if-no-two-consonants-must-be-together-




Question Number 26480 by NECx last updated on 26/Dec/17
Find the number of all possible  different words into which the  word INTERFERE can be   converted by change of place of   letters,if no two consonants  must be together.
$${Find}\:{the}\:{number}\:{of}\:{all}\:{possible} \\ $$$${different}\:{words}\:{into}\:{which}\:{the} \\ $$$${word}\:{INTERFERE}\:{can}\:{be}\: \\ $$$${converted}\:{by}\:{change}\:{of}\:{place}\:{of}\: \\ $$$${letters},{if}\:{no}\:{two}\:{consonants} \\ $$$${must}\:{be}\:{together}. \\ $$
Answered by mrW1 last updated on 26/Dec/17
The consonants NTRFR must be  separated by the other 4 letters.  XYXYXYXYX  Y=position of vowels  X=position of the consonants  To arrange the 4 vowels (IEEE):   4 ways    To arrange the 5 consonants:  ((5!)/(2!))=5×4×3=60 ways    Number of words:  4×60=240
$${The}\:{consonants}\:{NTRFR}\:{must}\:{be} \\ $$$${separated}\:{by}\:{the}\:{other}\:\mathrm{4}\:{letters}. \\ $$$${XYXYXYXYX} \\ $$$${Y}={position}\:{of}\:{vowels} \\ $$$${X}={position}\:{of}\:{the}\:{consonants} \\ $$$${To}\:{arrange}\:{the}\:\mathrm{4}\:{vowels}\:\left({IEEE}\right):\: \\ $$$$\mathrm{4}\:{ways} \\ $$$$ \\ $$$${To}\:{arrange}\:{the}\:\mathrm{5}\:{consonants}: \\ $$$$\frac{\mathrm{5}!}{\mathrm{2}!}=\mathrm{5}×\mathrm{4}×\mathrm{3}=\mathrm{60}\:{ways} \\ $$$$ \\ $$$${Number}\:{of}\:{words}: \\ $$$$\mathrm{4}×\mathrm{60}=\mathrm{240} \\ $$
Commented by NECx last updated on 26/Dec/17
thanks boss
$${thanks}\:{boss} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *