Menu Close

Find-the-number-of-positive-integers-x-such-that-x-m-1-x-m-1-for-a-particular-integer-m-2-means-G-I-F-




Question Number 28186 by Tinkutara last updated on 25/Jan/18
Find the number of positive integers  x such that [(x/(m−1))]=[(x/(m+1))], for a  particular integer m≥2.  [ ] means G.I.F.
Findthenumberofpositiveintegersxsuchthat[xm1]=[xm+1],foraparticularintegerm2.[]meansG.I.F.
Commented by abdo imad last updated on 25/Jan/18
 if 0<x<m−1⇒0< (x/(m−1))<1   and  0<x<m+1  ⇒ [(x/(m−1))]=[(x/(m+1))]=0 let suppose x ≥m−1≥1  x=q(m−1) +r and q ,r integers 0≤r<m−1  (x/(m−1))=q +(r/(m−1)) ⇒[(x/(m−1))]=q+[(r/(m−1))]=q+0=q  (x/(m+1))=((q(m−1)+r)/(m+1)) = ((q(m+1)−2q +r)/(m+1))=q + ((r−2q)/(m+1)) and  [(x/(m+1))]=q +[((r−2q)/(m+1))]    e ⇔q=q +[((r−2q)/(m+1))]⇔ [((r−2q)/(m+1))]=0 ⇔0≤ ((r−2q)/(m+1))<1  ⇔0≤ r−2q<m+1  but x = qm−q +r=q(m+1)+r−2q  ⇒r−2q=x −q(m+1)⇒0≤x −q(m+1)<m+1  ⇒q(m+1)≤x<(q+1)(m+1)....
if0<x<m10<xm1<1and0<x<m+1[xm1]=[xm+1]=0letsupposexm11x=q(m1)+randq,rintegers0r<m1xm1=q+rm1[xm1]=q+[rm1]=q+0=qxm+1=q(m1)+rm+1=q(m+1)2q+rm+1=q+r2qm+1and[xm+1]=q+[r2qm+1]eq=q+[r2qm+1][r2qm+1]=00r2qm+1<10r2q<m+1butx=qmq+r=q(m+1)+r2qr2q=xq(m+1)0xq(m+1)<m+1q(m+1)x<(q+1)(m+1).

Leave a Reply

Your email address will not be published. Required fields are marked *