Menu Close

Find-the-number-of-real-roots-of-the-equation-f-x-x-3-2x-2-2x-1-0-




Question Number 20259 by Tinkutara last updated on 24/Aug/17
Find the number of real roots of the  equation f(x) = x^3  + 2x^2  + 2x + 1 = 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$
Answered by ajfour last updated on 24/Aug/17
f ′(x)=3x^2 +4x+2 >0  so just one real root.
$${f}\:'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{2}\:>\mathrm{0} \\ $$$${so}\:{just}\:\boldsymbol{{one}}\:\boldsymbol{{real}}\:\boldsymbol{{root}}. \\ $$
Commented by Tinkutara last updated on 25/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Commented by Tinkutara last updated on 24/Aug/17
Why f′(x) > 0 ⇒ one real root only?
$$\mathrm{Why}\:{f}'\left({x}\right)\:>\:\mathrm{0}\:\Rightarrow\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{only}? \\ $$
Commented by ajfour last updated on 24/Aug/17
Commented by ajfour last updated on 24/Aug/17
in order to cross x-axis again the  curve needs to take a turn, the  point where tangent is horizontal  f ′(x)=(dy/dx)=0 , if prior to this point   f ′(x)<0 and after that f ′(x)>0  or first f ′(x)>0 then through  zero it becomes <0 then it  implies a turn is taken. line takes  no turn has maximum one root  (except y=0),a quadratic  function takes one turn, max  two roots,   cubic function proceeds from  ∓∞ to ±∞ .in between if it  does not take this turn it crosses  x only once.And sometimes  there is the turn but yet it crosses  x-axis only once, as (in sketch in  comment) .Anyhow if f (x) is  cubic and f ′(x) never zero then it  either keeps increasing (if coeff.  of x^3  +ve) or keeps only  decreasing (if coeff. of x^3  −ve)..
$${in}\:{order}\:{to}\:{cross}\:{x}-{axis}\:{again}\:{the} \\ $$$${curve}\:{needs}\:{to}\:{take}\:{a}\:{turn},\:{the} \\ $$$${point}\:{where}\:{tangent}\:{is}\:{horizontal} \\ $$$${f}\:'\left({x}\right)=\frac{{dy}}{{dx}}=\mathrm{0}\:,\:{if}\:{prior}\:{to}\:{this}\:{point}\: \\ $$$${f}\:'\left({x}\right)<\mathrm{0}\:{and}\:{after}\:{that}\:{f}\:'\left({x}\right)>\mathrm{0} \\ $$$${or}\:{first}\:{f}\:'\left({x}\right)>\mathrm{0}\:{then}\:{through} \\ $$$${zero}\:{it}\:{becomes}\:<\mathrm{0}\:{then}\:{it} \\ $$$${implies}\:{a}\:{turn}\:{is}\:{taken}.\:{line}\:{takes} \\ $$$${no}\:{turn}\:{has}\:{maximum}\:{one}\:{root} \\ $$$$\left({except}\:{y}=\mathrm{0}\right),{a}\:{quadratic} \\ $$$${function}\:{takes}\:{one}\:{turn},\:{max} \\ $$$${two}\:{roots},\: \\ $$$${cubic}\:{function}\:{proceeds}\:{from} \\ $$$$\mp\infty\:{to}\:\pm\infty\:.{in}\:{between}\:{if}\:{it} \\ $$$${does}\:{not}\:{take}\:{this}\:{turn}\:{it}\:{crosses} \\ $$$${x}\:{only}\:{once}.{And}\:{sometimes} \\ $$$${there}\:{is}\:{the}\:{turn}\:{but}\:{yet}\:{it}\:{crosses} \\ $$$${x}-{axis}\:{only}\:{once},\:{as}\:\left({in}\:{sketch}\:{in}\right. \\ $$$$\left.{comment}\right)\:.{Anyhow}\:{if}\:{f}\:\left({x}\right)\:{is} \\ $$$${cubic}\:{and}\:{f}\:'\left({x}\right)\:{never}\:{zero}\:{then}\:{it} \\ $$$${either}\:{keeps}\:{increasing}\:\left({if}\:{coeff}.\right. \\ $$$$\left.{of}\:{x}^{\mathrm{3}} \:+{ve}\right)\:{or}\:{keeps}\:{only} \\ $$$${decreasing}\:\left({if}\:{coeff}.\:{of}\:{x}^{\mathrm{3}} \:−{ve}\right).. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *