Menu Close

Find-the-number-of-solution-s-of-x-2-x-sin-x-0-x-0-pi-




Question Number 14470 by Tinkutara last updated on 01/Jun/17
Find the number of solution(s) of  x^2  + x + sin x = 0, x ∈ [0, π]
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{sin}\:{x}\:=\:\mathrm{0},\:{x}\:\in\:\left[\mathrm{0},\:\pi\right] \\ $$
Commented by mrW1 last updated on 01/Jun/17
since x ∈ [0, π]  x^2 ≥0  x≥0  sin x≥0  x^2 +x+sin x≥0  “=” only at x=0  ⇒ x^2  + x + sin x = 0 has only  one solution x=0
$${since}\:{x}\:\in\:\left[\mathrm{0},\:\pi\right] \\ $$$${x}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$${x}\geqslant\mathrm{0} \\ $$$$\mathrm{sin}\:{x}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{x}+\mathrm{sin}\:{x}\geqslant\mathrm{0} \\ $$$$“=''\:{only}\:{at}\:{x}=\mathrm{0} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{sin}\:{x}\:=\:\mathrm{0}\:{has}\:{only} \\ $$$${one}\:{solution}\:{x}=\mathrm{0} \\ $$
Commented by Tinkutara last updated on 01/Jun/17
But minimum value of x^2  + x is ((−1)/4) at  x = ((−1)/2) . Will it not affect the answer?
$$\mathrm{But}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{x}\:\mathrm{is}\:\frac{−\mathrm{1}}{\mathrm{4}}\:\mathrm{at} \\ $$$${x}\:=\:\frac{−\mathrm{1}}{\mathrm{2}}\:.\:\mathrm{Will}\:\mathrm{it}\:\mathrm{not}\:\mathrm{affect}\:\mathrm{the}\:\mathrm{answer}? \\ $$
Commented by mrW1 last updated on 01/Jun/17
x∈[0,π]  so x≥0, and there is no minimum.
$${x}\in\left[\mathrm{0},\pi\right] \\ $$$${so}\:{x}\geqslant\mathrm{0},\:{and}\:{there}\:{is}\:{no}\:{minimum}. \\ $$
Commented by Tinkutara last updated on 01/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *