Menu Close

find-the-ODEs-of-y-Ae-x-Bxe-x-Ce-2x-De-3x-




Question Number 111209 by mathdave last updated on 02/Sep/20
find the ODEs of   y=Ae^x +Bxe^x +Ce^(−2x) +De^(3x)
$${find}\:{the}\:{ODEs}\:{of}\: \\ $$$${y}={Ae}^{{x}} +{Bxe}^{{x}} +{Ce}^{−\mathrm{2}{x}} +{De}^{\mathrm{3}{x}} \\ $$
Commented by mohammad17 last updated on 02/Sep/20
can you solve
$${can}\:{you}\:{solve} \\ $$
Commented by mohammad17 last updated on 02/Sep/20
  y^((4)) −3y^((3)) −3y^(′′) +11y^′ −6y=0
$$ \\ $$$${y}^{\left(\mathrm{4}\right)} −\mathrm{3}{y}^{\left(\mathrm{3}\right)} −\mathrm{3}{y}^{''} +\mathrm{11}{y}^{'} −\mathrm{6}{y}=\mathrm{0} \\ $$
Commented by mohammad17 last updated on 02/Sep/20
  i think     (D^4 −3D^3 −3D^2 +11D−6)y=0
$$ \\ $$$${i}\:{think}\: \\ $$$$ \\ $$$$\left({D}^{\mathrm{4}} −\mathrm{3}{D}^{\mathrm{3}} −\mathrm{3}{D}^{\mathrm{2}} +\mathrm{11}{D}−\mathrm{6}\right){y}=\mathrm{0} \\ $$
Commented by mathdave last updated on 02/Sep/20
oh no
$${oh}\:{no}\: \\ $$
Commented by mathdave last updated on 02/Sep/20
solve it why just spotting only the  answer
$${solve}\:{it}\:{why}\:{just}\:{spotting}\:{only}\:{the} \\ $$$${answer} \\ $$
Commented by mohammad17 last updated on 03/Sep/20
the solution is given by dirvaitive
$${the}\:{solution}\:{is}\:{given}\:{by}\:{dirvaitive}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *