Menu Close

find-the-point-on-the-curve-3x-2-4y-2-72-closest-to-line-3x-2y-1-0-




Question Number 120378 by john santu last updated on 31/Oct/20
find the point on the curve 3x^2 −4y^2 =72  closest to line 3x+2y−1=0
findthepointonthecurve3x24y2=72closesttoline3x+2y1=0
Commented by bramlexs22 last updated on 31/Oct/20
let (x,y) is a point on hyperbola  y^2 =((3x^2 −72)/4) and closest to line  3x+2y−1=0 , we get the distance  d =((∣3x±2(√((3x^2 −72)/4))−1∣)/( (√(13))))  d = ((∣3x±(√(3x^2 −72))−1∣)/( (√(13))))  we take (d/dx) [ ((3x±(√(3x^2 −72))−1)/( (√(13)))) ]=0  ⇔ 3 ± ((3x)/( (√(3x^2 −72)))) = 0  we get x^2 =36 or x=±6 then  y=±(√((3.36−72)/4))=±(√9) = ± 3  check point  (i) (6,3)⇒d = ((18+6−1)/( (√(13))))=((23)/( (√(13))))  (ii)(6,−3)⇒d=((18−6−1)/( (√(13))))=((11)/( (√(13))))←d_(min)   (iii)(−6,3)⇒d=((∣−18+6−1∣)/( (√(13))))=((17)/( (√(13))))  (iv)(−6,−3)⇒d=((∣−18−6−1∣)/( (√(13))))=((25)/( (√(13))))
let(x,y)isapointonhyperbolay2=3x2724andclosesttoline3x+2y1=0,wegetthedistanced=3x±23x2724113d=3x±3x272113wetakeddx[3x±3x272113]=03±3x3x272=0wegetx2=36orx=±6theny=±3.36724=±9=±3checkpoint(i)(6,3)d=18+6113=2313(ii)(6,3)d=186113=1113dmin(iii)(6,3)d=18+6113=1713(iv)(6,3)d=186113=2513
Commented by john santu last updated on 31/Oct/20
Answered by mr W last updated on 31/Oct/20
3x^2 −4y^2 =72  6x−8y(dy/dx)=0  6x−8y×(−(3/2))=0  ⇒x=−2y  3(−2y)^2 −4y^2 =72  y^2 =9  ⇒y=±3  ⇒x=∓6  ⇒(6,−3) and (−6,3)  (1/( (√(3^2 +2^2 ))))∣3×6+2(−3)−1∣=((11)/( (√(13))))✓  (1/( (√(3^2 +2^2 ))))∣3×(−6)+2×3−1∣=((13)/( (√(13))))  ⇒(6,−3) is closest to 3x+2y−1=0.  and the closest distance is ((11)/( (√(13)))).
3x24y2=726x8ydydx=06x8y×(32)=0x=2y3(2y)24y2=72y2=9y=±3x=6(6,3)and(6,3)132+223×6+2(3)1∣=1113132+223×(6)+2×31∣=1313(6,3)isclosestto3x+2y1=0.andtheclosestdistanceis1113.
Commented by mr W last updated on 31/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *