Question Number 120378 by john santu last updated on 31/Oct/20

Commented by bramlexs22 last updated on 31/Oct/20
![let (x,y) is a point on hyperbola y^2 =((3x^2 −72)/4) and closest to line 3x+2y−1=0 , we get the distance d =((∣3x±2(√((3x^2 −72)/4))−1∣)/( (√(13)))) d = ((∣3x±(√(3x^2 −72))−1∣)/( (√(13)))) we take (d/dx) [ ((3x±(√(3x^2 −72))−1)/( (√(13)))) ]=0 ⇔ 3 ± ((3x)/( (√(3x^2 −72)))) = 0 we get x^2 =36 or x=±6 then y=±(√((3.36−72)/4))=±(√9) = ± 3 check point (i) (6,3)⇒d = ((18+6−1)/( (√(13))))=((23)/( (√(13)))) (ii)(6,−3)⇒d=((18−6−1)/( (√(13))))=((11)/( (√(13))))←d_(min) (iii)(−6,3)⇒d=((∣−18+6−1∣)/( (√(13))))=((17)/( (√(13)))) (iv)(−6,−3)⇒d=((∣−18−6−1∣)/( (√(13))))=((25)/( (√(13))))](https://www.tinkutara.com/question/Q120381.png)
Commented by john santu last updated on 31/Oct/20

Answered by mr W last updated on 31/Oct/20

Commented by mr W last updated on 31/Oct/20
