Menu Close

Find-the-point-on-the-curve-x-2y-2-closest-to-the-point-10-0-




Question Number 121264 by benjo_mathlover last updated on 06/Nov/20
Find the point on the curve  x=2y^2  closest to the point  (10,0)
Findthepointonthecurvex=2y2closesttothepoint(10,0)
Answered by liberty last updated on 06/Nov/20
Let L be the square of distance between  (x,y) and (10,0).  L = (x−10)^2 +y^2 =(2y^2 −10)^2 +y^2   L=4y^4 −39y^2 +100  (dL/dy) = 16y^3 −78y = 0   2y(8y^2 −39)=0 , y = 0; ± ((√(39))/(2(√2)))  (dL/dy) < 0 on (−∞,−((√(39))/(2(√2))) ) and (0, ((√(39))/(2(√2))))  (dL/dy)>0 on (−((√(39))/(2(√2))),0) and (((√(39))/(2(√2))),∞)  When y=−((√(39))/(2(√2))) , x=((39)/4)  and y=((√(39))/(2(√2))) , x=((39)/4). ∵ The points are  (((39)/4),−((√(39))/(2(√2)))) and (((39)/4), ((√(39))/(2(√2))) )
LetLbethesquareofdistancebetween(x,y)and(10,0).L=(x10)2+y2=(2y210)2+y2L=4y439y2+100dLdy=16y378y=02y(8y239)=0,y=0;±3922dLdy<0on(,3922)and(0,3922)dLdy>0on(3922,0)and(3922,)Wheny=3922,x=394andy=3922,x=394.Thepointsare(394,3922)and(394,3922)
Answered by mr W last updated on 06/Nov/20
say point P(2p^2 ,p)  1=4y(dy/dx)  (dy/dx)=(1/(4p))=−((10−2p^2 )/(0−p))  ⇒−8p^2 +40=1  ⇒p=±((√(39))/(2(√2)))  ⇒P(((39)/4),±((√(39))/(2(√2))))
saypointP(2p2,p)1=4ydydxdydx=14p=102p20p8p2+40=1p=±3922P(394,±3922)
Commented by liberty last updated on 06/Nov/20
it should be 1= 4y (dy/dx)
itshouldbe1=4ydydx
Commented by mr W last updated on 06/Nov/20
yes. thanks!
yes.thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *