Menu Close

find-the-polynial-p-wich-verify-p-x-p-x-x-n-then-calculate-0-1-p-x-dx-




Question Number 31499 by abdo imad last updated on 09/Mar/18
find the polynial p wich verify p(x)−p^′ (x)=x^n  then  calculate ∫_0 ^1 p(x)dx.
findthepolynialpwichverifyp(x)p(x)=xnthencalculate01p(x)dx.
Commented by abdo imad last updated on 14/Mar/18
let put p(x)=Σ_(k=0) ^n a_k x^k  we have p^′ (x)=Σ_(k=1) ^n k a_k x^(k−1)   p(x)−p^′ (x)=x^n  ⇔Σ_(k=0) ^n a_k x^k  −Σ_(k=1) ^n k a_k  x^(k−1)  =x^n   ⇔ Σ_(k=0) ^n  a_k x^k   −Σ_(k=0) ^(n−1)  (k+1)a_(k+1)  x^k  =x^n  ⇔  Σ_(k=0) ^(n−1)  (a_k  −(k+1)a_(k+1) )x^k   +a_n x^n =x^n  ⇔   a_k  −(k+1)a_(k+1) =0 ∀k∈[[0,n−1]] and a_n =1 ⇔a_n =1 and  a_(k+1) = (a_k /(k+1)) ⇒ Π_(k=0) ^(n−1)  a_(k+1) = ((Π_(k=0) ^(n−1)  a_k )/(Π_(k=0) ^(n−1) (k+1))) ⇒  a_1 .a_2 ...a_n =(1/(n!)) a_0 .a_1 .a_2 ...a_(n−1)  ⇒a_n = (a_0 /(n!)) ⇒  p(x)= Σ_(k=0) ^(n−1)  (a_0 /(k!)) x^k    +x^n   p(o)−p^′ (0)=0 ⇒a_0  =0 ⇒ p(x)= Σ_(k=1) ^(n−1)   (x^k /(k!)) +x^n   2) ∫_0 ^1  p(x)dx=Σ_(k=1) ^(n−1) (1/(k!)) ∫_0 ^1  x^k dx  +(1/(n+1))  =Σ_(k=1) ^(n−1)   (1/((k+1)!)) +(1/(n+1))
letputp(x)=k=0nakxkwehavep(x)=k=1nkakxk1p(x)p(x)=xnk=0nakxkk=1nkakxk1=xnk=0nakxkk=0n1(k+1)ak+1xk=xnk=0n1(ak(k+1)ak+1)xk+anxn=xnak(k+1)ak+1=0k[[0,n1]]andan=1an=1andak+1=akk+1k=0n1ak+1=k=0n1akk=0n1(k+1)a1.a2an=1n!a0.a1.a2an1an=a0n!p(x)=k=0n1a0k!xk+xnp(o)p(0)=0a0=0p(x)=k=1n1xkk!+xn2)01p(x)dx=k=1n11k!01xkdx+1n+1=k=1n11(k+1)!+1n+1

Leave a Reply

Your email address will not be published. Required fields are marked *