Menu Close

Find-the-positive-integer-n-such-that-tan-1-1-3-tan-1-1-4-tan-1-1-5-tan-1-1-n-pi-4-




Question Number 111725 by Aina Samuel Temidayo last updated on 04/Sep/20
Find the positive integer n such that  tan^(−1) ((1/3))+tan^(−1) ((1/4))+tan^(−1) ((1/5))+tan^(−1) ((1/n))=(π/4)
Findthepositiveintegernsuchthattan1(13)+tan1(14)+tan1(15)+tan1(1n)=π4
Answered by $@y@m last updated on 04/Sep/20
Let tan^(−1) ((1/3))=α⇒tan α=(1/3)  Let tan^(−1) ((1/4))=β⇒tan β=(1/4)  Let tan^(−1) ((1/5))=γ⇒tan γ=(1/5)  Let tan^(−1) ((1/n))=δ⇒tan δ=(1/n)  ATQ,  α+β+γ+δ=(π/4)  α+β+γ=(π/4)−δ  tan (α+β+γ)=tan ((π/4)−δ)  (((1/3)+(1/4)+(1/5)−(1/(3.4.5)))/(1−(1/(3.4))−(1/(4.5))−(1/(5.3))))=((1−tan δ)/(1+tan δ))  ((1−tan δ)/(1+tan δ))=(((20+15+12−1)/(60))/((60−5−3−4)/(60)))=((46)/(48))=((23)/(24))  24(1−tan δ)=23(1+tan δ)  1=47tan δ  tan δ=(1/(47))  δ=tan^(−1) ((1/(47)))  n=47
Lettan1(13)=αtanα=13Lettan1(14)=βtanβ=14Lettan1(15)=γtanγ=15Lettan1(1n)=δtanδ=1nATQ,α+β+γ+δ=π4α+β+γ=π4δtan(α+β+γ)=tan(π4δ)13+14+1513.4.5113.414.515.3=1tanδ1+tanδ1tanδ1+tanδ=20+15+121606053460=4648=232424(1tanδ)=23(1+tanδ)1=47tanδtanδ=147δ=tan1(147)n=47
Commented by Aina Samuel Temidayo last updated on 04/Sep/20
47 is part of the options I have here.  Thanks.
47ispartoftheoptionsIhavehere.Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *