Menu Close

Find-the-positive-integer-solution-of-the-equation-x-3-y-3-7-14xy-3-




Question Number 157163 by MathSh last updated on 20/Oct/21
Find the positive integer solution  of the equation:  x^3  + y^3  = 7∙(14xy + 3)
Findthepositiveintegersolutionoftheequation:x3+y3=7(14xy+3)
Commented by Rasheed.Sindhi last updated on 22/Oct/21
x^3  + y^3  = 7∙(14xy + 3)  x^3  + y^3 −21 = 7^2 .2xy   x^3  + y^3 −21∈E  ⇒x^3  + y^3 ∈O  ⇒ one of x,y is odd and other is even.  As x and y are exchangeable we may  take any one of these as odd.  let x∈O , y∈E  (2m+1)^3 +(2n)^3 −21=98(2m+1)(2n)  ▶8m^3 +1+6m(2m+1)+8n^3 −21                      =98(2m+1)(2n)  ▶8m^3 +8n^3 +6m(2m+1)−20                       =98(2m+1)(2n)  ▶4m^3 +4n^3 +3m(2m+1)−10                       =49(2m+1)(2n)  49(2m+1)(2n)∈E  ⇒4m^3 +4n^3 +3m(2m+1)−10∈E  ⇒3m(2m+1)∈E  ⇒6m^2 +3m∈E⇒m∈E  x=2m+1=2(2k)+1=4k+1;k∈W  x=1,5,9,....  x=1:  (1)^3 +y^3 =7(14.1.y+3)  y^3 −98y−20=0  (y−10)(y^2 +10y+2_(y∉N) )=0  y=10  Continue
x3+y3=7(14xy+3)x3+y321=72.2xyx3+y321Ex3+y3Ooneofx,yisoddandotheriseven.Asxandyareexchangeablewemaytakeanyoneoftheseasodd.letxO,yE(2m+1)3+(2n)321=98(2m+1)(2n)8m3+1+6m(2m+1)+8n321=98(2m+1)(2n)8m3+8n3+6m(2m+1)20=98(2m+1)(2n)4m3+4n3+3m(2m+1)10=49(2m+1)(2n)49(2m+1)(2n)E4m3+4n3+3m(2m+1)10E3m(2m+1)E6m2+3mEmEx=2m+1=2(2k)+1=4k+1;kWx=1,5,9,.x=1:(1)3+y3=7(14.1.y+3)y398y20=0(y10)(y2+10y+2yN)=0y=10Continue
Answered by Rasheed.Sindhi last updated on 20/Oct/21
x^3  + y^3  = 7∙(14xy + 3); x^(?)  , y^(?)  ∈ Z^+   (x+y_(u) )^3 −3xy_(v) (x+y)=7∙(14xy + 3)  u^3 −3uv=7(14v+3)  u(u^2 −3v)=7(14v+3)  case1:u=7 ∧ u^2 −3v=14v+3  49−3v−14v−3=0  17v=46⇒v∉Z^+ .........(i)   case2: u^2 −3v=7 ∧ u=14v+3  (14v+3)^2 −3v=7  196v^2 +84v+9−3v−7=0  196v^2 +81v+2=0    v∉Z^+ ......................(ii)  In both possible cases :  v∉Z^+ ⇒xy∉Z^+ ⇒x∉Z^+  ∨ y∉Z^+   Solution not possible!
x3+y3=7(14xy+3);x?,y?Z+(x+yu)33xyv(x+y)=7(14xy+3)u33uv=7(14v+3)u(u23v)=7(14v+3)case1:u=7u23v=14v+3493v14v3=017v=46vZ+(i)case2:u23v=7u=14v+3(14v+3)23v=7196v2+84v+93v7=0196v2+81v+2=0vZ+.(ii)Inbothpossiblecases:vZ+xyZ+xZ+yZ+Solutionnotpossible!
Commented by MathSh last updated on 21/Oct/21
Thank you dear Ser, but ans: (1;10) (10;1)
ThankyoudearSer,butans:(1;10)(10;1)
Commented by Rasheed.Sindhi last updated on 21/Oct/21
Thank you dear sir^(?) /madam^(?) .  Certainly there′s logical error and  I′ll think over it.
Thankyoudearsir?/madam?.CertainlythereslogicalerrorandIllthinkoverit.

Leave a Reply

Your email address will not be published. Required fields are marked *