Question Number 33463 by NECx last updated on 17/Apr/18
$${Find}\:{the}\:{pricipal}\:{and}\:{ordinary} \\ $$$${argument}\:{of}\:{z}=\frac{{i}}{−\mathrm{2}−\mathrm{2}{i}} \\ $$
Commented by abdo imad last updated on 17/Apr/18
$${z}\:=\:\frac{−{i}}{\mathrm{2}\left(\mathrm{1}+{i}\right)}\:=\:\frac{−{i}\left(\mathrm{1}−{i}\right)}{\mathrm{4}}\:=\:\frac{\mathrm{1}−{i}}{\mathrm{4}}\:\Rightarrow\mid{z}\mid\:=\frac{\mathrm{1}}{\mathrm{4}}\mid\mathrm{1}−{i}\mid\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$${z}\:=\frac{\mathrm{1}}{\mathrm{4}}\:−\frac{{i}}{\mathrm{4}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:\Rightarrow{arg}\left({z}\right)\equiv−\frac{\pi}{\mathrm{4}}\left[\mathrm{2}\pi\right]\:. \\ $$