Menu Close

Find-the-pricipal-value-of-1-i-1-i-




Question Number 19936 by ajfour last updated on 18/Aug/17
Find the pricipal value of        (1−i)^(1+i)  .
Findthepricipalvalueof(1i)1+i.
Commented by prof Abdo imad last updated on 22/Jun/18
(1−i)^(1+i) =((√2) e^(−((iπ)/4)) )^(1+i)   =((√2))^(1+i)  e^(−((iπ)/4)(1+i))   =(√2) ((√2))^i  e^(−((iπ)/4) +(π/4))   =(√2) e^(iln((√2))−((iπ)/4))  e^(π/4)   =(√2) e^(π/4)  e^(i{ ln((√)2)−(π/4)})   =(√2) e^(π/4) { cos(ln((√2))−(π/4)) +i sin(ln(2)−(π/4))}.
(1i)1+i=(2eiπ4)1+i=(2)1+ieiπ4(1+i)=2(2)ieiπ4+π4=2eiln(2)iπ4eπ4=2eπ4ei{ln(2)π4}=2eπ4{cos(ln(2)π4)+isin(ln(2)π4)}.
Answered by sma3l2996 last updated on 18/Aug/17
(1−i)^(1+i) =[(√2)(((√2)/2)−i((√2)/2))]^(1+i) =((√2)e^(−i(π/4)) )^(1+i)   =2^((1+i)/2) ×e^((π/4)(1−i)) =2^(1/2) ×2^(i/2) ×e^(π/4) ×e^(−i(π/4))   =(√2)×e^(i((ln2)/2)) ×e^(π/4) ×e^(−iπ/4)   (1−i)^(1+i) =(√2)e^(π/4) ×e^(i(((2ln2−π)/4)))
(1i)1+i=[2(22i22)]1+i=(2eiπ4)1+i=21+i2×eπ4(1i)=212×2i2×eπ4×eiπ4=2×eiln22×eπ/4×eiπ/4(1i)1+i=2eπ/4×ei(2ln2π4)
Commented by ajfour last updated on 18/Aug/17
thanks sir, correct answer.
thankssir,correctanswer.

Leave a Reply

Your email address will not be published. Required fields are marked *