Menu Close

Find-the-pricipal-value-of-z-1-i-i-




Question Number 31335 by NECx last updated on 06/Mar/18
Find the pricipal value of   z=(1−i)^i
Findthepricipalvalueofz=(1i)i
Commented by abdo imad last updated on 06/Mar/18
we have z=e^(iln(1−i))   and ln here mesnd the complexe log  but 1−i=(√2)( (1/( (√2))) −(i/( (√2))) )=e^(−i(π/4)) ⇒ln(1−i)=ln((√2) )−((iπ)/4)⇒  iln(1−i)=iln((√2))+(π/4) ⇒e^(iln(1−i)) =e^(π/4) (cos(ln((√2))+isin(ln((√2))))⇒  (1−i)^i =e^(π/4) cos(ln((√2))) +i e^(π/4) sin(ln((√2))) .
wehavez=eiln(1i)andlnheremesndthecomplexelogbut1i=2(12i2)=eiπ4ln(1i)=ln(2)iπ4iln(1i)=iln(2)+π4eiln(1i)=eπ4(cos(ln(2)+isin(ln(2)))(1i)i=eπ4cos(ln(2))+ieπ4sin(ln(2)).
Commented by abdo imad last updated on 06/Mar/18
∣(1−i)^i ∣=e^(π/4)  .
(1i)i∣=eπ4.
Commented by NECx last updated on 06/Mar/18
thank you so much.
thankyousomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *