Menu Close

Find-the-principal-value-of-z-1-i-1-i-Hence-find-the-modulus-of-the-result-




Question Number 31336 by NECx last updated on 06/Mar/18
Find the principal value of  z=(1−i)^(1+i) .Hence find the  modulus of the result.
Findtheprincipalvalueofz=(1i)1+i.Hencefindthemodulusoftheresult.
Commented by abdo imad last updated on 06/Mar/18
we have z= e^((1+i)ln(1−i))  but 1−i=(√2) e^(−((iπ)/4))  ⇒  ln(1−i)=ln((√2)) −((iπ)/4) ⇒(1+i)ln(1−i)=(1+i)(ln((√2))−((iπ)/4))  =ln((√2))−((iπ)/4) +iln((√2)) +(π/4)=(π/4) +ln((√2)) +i(ln((√2))−(π/4))  z= e^((π/4)+ln((√2))) (cos(ln((√2) −(π/4))+isin(ln((√2) −(π/4)) and  ∣z∣= e^((π/4) +ln((√2)))   .
wehavez=e(1+i)ln(1i)but1i=2eiπ4ln(1i)=ln(2)iπ4(1+i)ln(1i)=(1+i)(ln(2)iπ4)=ln(2)iπ4+iln(2)+π4=π4+ln(2)+i(ln(2)π4)z=eπ4+ln(2)(cos(ln(2π4)+isin(ln(2π4)andz∣=eπ4+ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *