Menu Close

find-the-radius-of-convergence-for-the-serie-n-0-e-n-z-n-z-from-C-




Question Number 26176 by abdo imad last updated on 21/Dec/17
find the radius of convergence for the  serie Σ_(n=0) ^∝ e^(−(√n))  z^n   ...z from C.
$${find}\:{the}\:{radius}\:{of}\:{convergence}\:{for}\:{the} \\ $$$${serie}\:\sum_{{n}=\mathrm{0}} ^{\propto} {e}^{−\sqrt{{n}}} \:{z}^{{n}} \:\:…{z}\:{from}\:{C}. \\ $$
Commented by abdo imad last updated on 23/Dec/17
we put  u_(n(z))  = e^(−(√n))  z^n   and for z not o  /(u_(n+1(z)) /u_(n(z)) )/  =/ ((e^(−(√(n+1)))  z^(n+1) )/(e^(−(√n))  z^n ))/  =e^((√n)−(√(n+1))) /z/  but  lim _(n−>∝)  e^((√n)−(√(n+1)))  =e^((−1)/( (√n)+(√(n+1))))   = 1  finally   the serie converge⇔/z/<1  if z=−1   Σ e^(−(√n_ ))   (−1)^(n ) is convergent because its a alternating serie  for z=1 the serie   Σ e^(−(√n))   is convergent because the integral  ∫_0 ^∞ e^(−(√t))  dt is convergent(the function ψ(t)=e^(−(√t))  is decreasing  in[0.∝[⇒interval of convergence is D_c   =[−1.1]
$${we}\:{put}\:\:{u}_{{n}\left({z}\right)} \:=\:{e}^{−\sqrt{{n}}} \:{z}^{{n}} \:\:{and}\:{for}\:{z}\:{not}\:{o} \\ $$$$/\frac{{u}_{{n}+\mathrm{1}\left({z}\right)} }{{u}_{{n}\left({z}\right)} }/\:\:=/\:\frac{{e}^{−\sqrt{{n}+\mathrm{1}}} \:{z}^{{n}+\mathrm{1}} }{{e}^{−\sqrt{{n}}} \:{z}^{{n}} }/\:\:={e}^{\sqrt{{n}}−\sqrt{{n}+\mathrm{1}}} /{z}/ \\ $$$${but}\:\:{lim}\:_{{n}−>\propto} \:{e}^{\sqrt{{n}}−\sqrt{{n}+\mathrm{1}}} \:={e}^{\frac{−\mathrm{1}}{\:\sqrt{{n}}+\sqrt{{n}+\mathrm{1}}}} \:\:=\:\mathrm{1}\:\:{finally}\: \\ $$$${the}\:{serie}\:{converge}\Leftrightarrow/{z}/<\mathrm{1} \\ $$$${if}\:{z}=−\mathrm{1}\:\:\:\Sigma\:{e}^{−\sqrt{{n}_{} }} \:\:\left(−\mathrm{1}\right)^{{n}\:} {is}\:{convergent}\:{because}\:{its}\:{a}\:{alternating}\:{serie} \\ $$$${for}\:{z}=\mathrm{1}\:{the}\:{serie}\:\:\:\Sigma\:{e}^{−\sqrt{{n}}} \:\:{is}\:{convergent}\:{because}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{t}}} \:{dt}\:{is}\:{convergent}\left({the}\:{function}\:\psi\left({t}\right)={e}^{−\sqrt{{t}}} \:{is}\:{decreasing}\right. \\ $$$${in}\left[\mathrm{0}.\propto\left[\Rightarrow{interval}\:{of}\:{convergence}\:{is}\:{D}_{{c}} \:\:=\left[−\mathrm{1}.\mathrm{1}\right]\right.\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *