Menu Close

find-the-radius-of-convergence-for-the-serie-n-0-e-n-z-n-z-from-C-




Question Number 26176 by abdo imad last updated on 21/Dec/17
find the radius of convergence for the  serie Σ_(n=0) ^∝ e^(−(√n))  z^n   ...z from C.
findtheradiusofconvergencefortheserien=0enznzfromC.
Commented by abdo imad last updated on 23/Dec/17
we put  u_(n(z))  = e^(−(√n))  z^n   and for z not o  /(u_(n+1(z)) /u_(n(z)) )/  =/ ((e^(−(√(n+1)))  z^(n+1) )/(e^(−(√n))  z^n ))/  =e^((√n)−(√(n+1))) /z/  but  lim _(n−>∝)  e^((√n)−(√(n+1)))  =e^((−1)/( (√n)+(√(n+1))))   = 1  finally   the serie converge⇔/z/<1  if z=−1   Σ e^(−(√n_ ))   (−1)^(n ) is convergent because its a alternating serie  for z=1 the serie   Σ e^(−(√n))   is convergent because the integral  ∫_0 ^∞ e^(−(√t))  dt is convergent(the function ψ(t)=e^(−(√t))  is decreasing  in[0.∝[⇒interval of convergence is D_c   =[−1.1]
weputun(z)=enznandforznoto/un+1(z)un(z)/=/en+1zn+1enzn/=enn+1/z/butlimn>∝enn+1=e1n+n+1=1finallytheserieconverge/z/<1ifz=1Σen(1)nisconvergentbecauseitsaalternatingserieforz=1theserieΣenisconvergentbecausetheintegral0etdtisconvergent(thefunctionψ(t)=etisdecreasingin[0.[intervalofconvergenceisDc=[1.1]

Leave a Reply

Your email address will not be published. Required fields are marked *