Menu Close

find-the-radius-of-convergence-for-the-serie-n-1-H-n-x-n-H-n-k-1-k-n-1-k-




Question Number 26111 by abdo imad last updated on 19/Dec/17
find  the radius of convergence for the serie   Σ_(n=1) ^∝  H_n  x^n   H_n   =   Σ_(k=1) ^(k=n)   (1/k) .
$${find}\:\:{the}\:{radius}\:{of}\:{convergence}\:{for}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \:{H}_{{n}} \:{x}^{{n}} \\ $$$${H}_{{n}} \:\:=\:\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\frac{\mathrm{1}}{{k}}\:. \\ $$
Commented by prakash jain last updated on 21/Dec/17
∣x∣<1
$$\mid{x}\mid<\mathrm{1} \\ $$
Commented by abdo imad last updated on 22/Dec/17
we put  a_n^  =H_n    >0  lim_(n−>∝) (a_(n+1) /a_n ) =lim_(n−>∝) (H_(n+1) /H_n )  =lim_(n−>∝^ )  ((H_n  + (1/(n+1)))/H_n )==lim_(n−>∝) (1+ (1/((n+1)H_n )))=1  because H_n   ∼_(n−>∝)  ln(n)−>∝  we have  (1/R)=lim _(n−>∝) (a_(n+1) /a_n )=1  ⇒   R=1
$${we}\:{put}\:\:{a}_{{n}^{} } ={H}_{{n}} \:\:\:>\mathrm{0}\:\:{lim}_{{n}−>\propto} \frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:={lim}_{{n}−>\propto} \frac{{H}_{{n}+\mathrm{1}} }{{H}_{{n}} } \\ $$$$={lim}_{{n}−>\propto^{} } \:\frac{{H}_{{n}} \:+\:\frac{\mathrm{1}}{{n}+\mathrm{1}}}{{H}_{{n}} }=={lim}_{{n}−>\propto} \left(\mathrm{1}+\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){H}_{{n}} }\right)=\mathrm{1} \\ $$$${because}\:{H}_{{n}} \:\:\sim_{{n}−>\propto} \:{ln}\left({n}\right)−>\propto \\ $$$${we}\:{have}\:\:\frac{\mathrm{1}}{{R}}={lim}\:_{{n}−>\propto} \frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }=\mathrm{1}\:\:\Rightarrow\:\:\:{R}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *