Menu Close

find-the-radius-of-n-1-ln-n-n-3-n-1-z-n-




Question Number 33354 by caravan msup abdo. last updated on 15/Apr/18
find the radius of Σ_(n≥1)  ((ln(n))/( (√(n^3  +n+1)))) z^n
findtheradiusofn1ln(n)n3+n+1zn
Commented by math khazana by abdo last updated on 20/Apr/18
this serie is positifs terms let put u_(n ) =((ln(n))/( (√(n^3  +n+1))))  u_n = ((ln(n))/( (√n^3 )((√(1 +(1/n^2 ) +(1/n^3 )))))) ∼ ((ln(n))/(n^(3/2) ( 1+(1/2)((1/n^2 ) +(1/n^3 )))))  ∼    ((ln(n))/n^(3/2) ) =v_n     we have (v_(n+1) /v_n ) =  (((ln(n+1))/((n+1)^(3/2) ))/((ln(n))/n^(3/2) ))  = ((ln(n+1))/(ln(n))) ((n/(n+1)))^(3/2) →1(n→+∞) so the radius of  convergence is R =1 .
thisserieispositifstermsletputun=ln(n)n3+n+1un=ln(n)n3(1+1n2+1n3)ln(n)n32(1+12(1n2+1n3))ln(n)n32=vnwehavevn+1vn=ln(n+1)(n+1)32ln(n)n32=ln(n+1)ln(n)(nn+1)321(n+)sotheradiusofconvergenceisR=1.

Leave a Reply

Your email address will not be published. Required fields are marked *