Menu Close

find-the-radius-of-S-x-n-0-x-3n-2-3n-2-2-find-the-value-of-n-0-1-3n-2-3-n-




Question Number 29979 by abdo imad last updated on 14/Feb/18
find the radius of S(x)= Σ_(n=0) ^∞    (x^(3n+2) /(3n+2))  2)find the value of  Σ_(n=0) ^∞    (1/((3n+2)3^n )).
findtheradiusofS(x)=n=0x3n+23n+22)findthevalueofn=01(3n+2)3n.
Commented by abdo imad last updated on 17/Feb/18
1)for x=0  S(x)=0 for x≠o we have   ∣((u_(n+1) (x))/(u_n (x)))∣=∣ ((x^(3n+5) /(3n+5))/(x^(3n+2) /(3n+2)))∣=((3n+2)/(3n+5)) ∣x∣_(n→∞) ^3  →∣x∣^3  ⇒if ∣x∣<1  the serie converge if ∣x∣≥1 the serie diverge if x=−1  S(−1)= Σ_(n=0) ^∞  (((−1)^n )/(3n+2)) converge(alternate serie) so R=1  2) for ∣x∣<1 and due to uniform convergence we have  S^′ (x)= Σ_(n=0) ^∞   x^(3n+1) =x Σ_(n=0) ^∞  (x^3 )^n =x (1/(1−x^3 )) ⇒  S(x)= ∫  ((xdx)/(1−x^3 )) +λ  let decompose  F(x)= (x/(1−x^3 ))= (x/((1−x)(x^2 +x+1)))= (a/(1−x)) +((bx+c)/(x^2 +x+1))   a=lim_(x→1) (1−x)F(x)= (1/3) so  F(x)= (1/(3(1−x))) +((bx+c)/(x^2  +x+1))  lim_(x→∞)  xF(x)=0=((−1)/3) +b  ⇒b=(1/3)  ⇒  F(x)= (1/(3(1−x)))  +(((1/3)x +c)/(x^2 +x+1))  F(0)=0= (1/3) +c ⇒c=−(1/3) and   F(x)=(1/(3(1−x))) +(1/3) ((x−1)/(x^2 +x+1)) ⇒  ∫ (x/(1−x^3 ))dx=(1/3)( ∫ (dx/(1−x)) + ∫((x−1)/(x^2 +x+1))dx)  3 ∫ (x/(1−x^3 ))dx= ∫ (dx/(1−x)) +(1/2)∫  ((2x+1−3)/(x^2 +x+1))dx  = (1/2)ln(x^2 +x+1)−ln∣1−x∣ −(3/2) ∫    (dx/(x^2 +x+1))  but  ∫   (dx/(x^2 +x+1)) = ∫   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)t)    ∫     (1/((3/4)(t^2 +1)))((√3)/2)dt  =(4/3) ((√3)/2) ∫    (dt/(1+t^2 )) = (2/( (√3))) artant=(2/( (√3)))arctan((2/( (√3)))(x+(1/2)))  3 ∫   (x/(1−x^2 ))dx =ln(((√(x^2 +x+1))/(∣1−x∣)))−(√3)  arctan((1/( (√3)))(2x+1))  ∫ ((xdx)/(1−x^2 )) =(1/3)ln(((√(x^2 +x+1))/(∣1−x∣))) −((√3)/3) arctan((1/( (√3)))(2x+1))  S(x)= (1/3)ln(((√(x^2 +x+1))/(∣1−x∣))) −((√3)/3) arctan((1/( (√3)))(2x+1)) +λ  =A(x)+λ⇒λ=lim_(→0)  S(x)−A(x)=−A(0)  =((√3)/3) arctan((1/( (√3))))=((√3)/3) (π/6) =((π(√3))/(18)) and S(x)=Σ_(n=0) ^∞  (x^(3n+2) /(3n+2))  we have  Σ_(n=0) ^∞     (1/((3n+2)3^n ))=Σ_(n=0) ^∞   ((((1/3))^n )/(3n+2))  =(3_(√3) )^2 Σ_(n=0) ^∞     ((((1/3_(√3) ))^(3n+2) )/(3n+2)) =(3_(√3) )^2  S(( 3_(√3) )^(−1) ) the sum S is  known.
1)forx=0S(x)=0forxowehaveun+1(x)un(x)∣=∣x3n+53n+5x3n+23n+2∣=3n+23n+5xn3→∣x3ifx∣<1theserieconvergeifx∣⩾1theseriedivergeifx=1S(1)=n=0(1)n3n+2converge(alternateserie)soR=12)forx∣<1andduetouniformconvergencewehaveS(x)=n=0x3n+1=xn=0(x3)n=x11x3S(x)=xdx1x3+λletdecomposeF(x)=x1x3=x(1x)(x2+x+1)=a1x+bx+cx2+x+1a=limx1(1x)F(x)=13soF(x)=13(1x)+bx+cx2+x+1limxxF(x)=0=13+bb=13F(x)=13(1x)+13x+cx2+x+1F(0)=0=13+cc=13andF(x)=13(1x)+13x1x2+x+1x1x3dx=13(dx1x+x1x2+x+1dx)3x1x3dx=dx1x+122x+13x2+x+1dx=12ln(x2+x+1)ln1x32dxx2+x+1butdxx2+x+1=dx(x+12)2+34=x+12=32t134(t2+1)32dt=4332dt1+t2=23artant=23arctan(23(x+12))3x1x2dx=ln(x2+x+11x)3arctan(13(2x+1))xdx1x2=13ln(x2+x+11x)33arctan(13(2x+1))S(x)=13ln(x2+x+11x)33arctan(13(2x+1))+λ=A(x)+λλ=lim0S(x)A(x)=A(0)=33arctan(13)=33π6=π318andS(x)=n=0x3n+23n+2wehaven=01(3n+2)3n=n=0(13)n3n+2=(33)2n=0(133)3n+23n+2=(33)2S((33)1)thesumSisknown.

Leave a Reply

Your email address will not be published. Required fields are marked *