find-the-radius-of-S-x-n-0-x-3n-2-3n-2-2-find-the-value-of-n-0-1-3n-2-3-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 29979 by abdo imad last updated on 14/Feb/18 findtheradiusofS(x)=∑n=0∞x3n+23n+22)findthevalueof∑n=0∞1(3n+2)3n. Commented by abdo imad last updated on 17/Feb/18 1)forx=0S(x)=0forx≠owehave∣un+1(x)un(x)∣=∣x3n+53n+5x3n+23n+2∣=3n+23n+5∣x∣n→∞3→∣x∣3⇒if∣x∣<1theserieconvergeif∣x∣⩾1theseriedivergeifx=−1S(−1)=∑n=0∞(−1)n3n+2converge(alternateserie)soR=12)for∣x∣<1andduetouniformconvergencewehaveS′(x)=∑n=0∞x3n+1=x∑n=0∞(x3)n=x11−x3⇒S(x)=∫xdx1−x3+λletdecomposeF(x)=x1−x3=x(1−x)(x2+x+1)=a1−x+bx+cx2+x+1a=limx→1(1−x)F(x)=13soF(x)=13(1−x)+bx+cx2+x+1limx→∞xF(x)=0=−13+b⇒b=13⇒F(x)=13(1−x)+13x+cx2+x+1F(0)=0=13+c⇒c=−13andF(x)=13(1−x)+13x−1x2+x+1⇒∫x1−x3dx=13(∫dx1−x+∫x−1x2+x+1dx)3∫x1−x3dx=∫dx1−x+12∫2x+1−3x2+x+1dx=12ln(x2+x+1)−ln∣1−x∣−32∫dxx2+x+1but∫dxx2+x+1=∫dx(x+12)2+34=x+12=32t∫134(t2+1)32dt=4332∫dt1+t2=23artant=23arctan(23(x+12))3∫x1−x2dx=ln(x2+x+1∣1−x∣)−3arctan(13(2x+1))∫xdx1−x2=13ln(x2+x+1∣1−x∣)−33arctan(13(2x+1))S(x)=13ln(x2+x+1∣1−x∣)−33arctan(13(2x+1))+λ=A(x)+λ⇒λ=lim→0S(x)−A(x)=−A(0)=33arctan(13)=33π6=π318andS(x)=∑n=0∞x3n+23n+2wehave∑n=0∞1(3n+2)3n=∑n=0∞(13)n3n+2=(33)2∑n=0∞(133)3n+23n+2=(33)2S((33)−1)thesumSisknown. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-ln-x-lnx-x-n-1-x-n-ln-1-x-n-with-x-gt-0-Next Next post: prove-that-n-1-1-n-ln-1-1-n-2-show-that-k-2-1-k-k-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.