Menu Close

find-the-range-of-f-x-1-2x-1-




Question Number 32489 by NECx last updated on 26/Mar/18
find the range of f(x)=1+(√(2x−1))
$${find}\:{the}\:{range}\:{of}\:{f}\left({x}\right)=\mathrm{1}+\sqrt{\mathrm{2}{x}−\mathrm{1}} \\ $$
Commented by prof Abdo imad last updated on 28/Mar/18
D_f =[(1/2),+∞[  and f^′ (x) =  (1/( (√(2x−1))))  >0 on](1/2),+∞[  lim_(x→+∞) f(x)=+∞  and   f([(1/2),+∞[ =[f((1/2)),^�  +∞[ =[1 ,+∞[  .
$${D}_{{f}} =\left[\frac{\mathrm{1}}{\mathrm{2}},+\infty\left[\:\:{and}\:{f}^{'} \left({x}\right)\:=\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{x}−\mathrm{1}}}\:\:>\mathrm{0}\:{on}\right]\frac{\mathrm{1}}{\mathrm{2}},+\infty\left[\right.\right. \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=+\infty\:\:{and}\: \\ $$$${f}\left(\left[\frac{\mathrm{1}}{\mathrm{2}},+\infty\left[\:=\left[{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\bar {,}\:+\infty\left[\:=\left[\mathrm{1}\:,+\infty\left[\:\:.\right.\right.\right.\right.\right.\right.\right. \\ $$
Answered by MJS last updated on 26/Mar/18
domain: x∈R∧x≧(1/2)  range: x∈R∧x≧1
$$\mathrm{domain}:\:{x}\in\mathbb{R}\wedge{x}\geqq\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{range}:\:{x}\in\mathbb{R}\wedge{x}\geqq\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *