Menu Close

Find-the-range-of-values-of-x-for-which-the-series-x-27-x-2-125-x-n-2n-1-3-is-absolutely-convergent-Help-




Question Number 185038 by Mastermind last updated on 16/Jan/23
Find the range of values of x for which  the series (x/(27))+(x^2 /(125))+...+(x^n /((2n+1)^3 ))+...  is absolutely convergent.      Help!
Findtherangeofvaluesofxforwhichtheseriesx27+x2125++xn(2n+1)3+isabsolutelyconvergent.Help!
Answered by FelipeLz last updated on 16/Jan/23
S = Σ_(n=1) ^∞ (x^n /((2n+1)^3 ))  lim_(n→∞) ∣((x^(n+1) /([2(n+1)+1]^3 ))/(x^n /((2n+1)^3 )))∣ < 1  lim_(n→∞) ∣x×(((2n+1)/(2n+3)))^3 ∣ < 1  lim_(n→∞) ∣x∣×lim_(n→∞) ∣(((2n+1)/(2n+3))×(n^(−1) /n^(−1) ))^3 ∣ < 1  ∣x∣×lim_(n→∞) ∣(((2+n^(−1) )/(2+3n^(−1) )))^3 ∣ < 1  ∣x∣ < 1
S=n=1xn(2n+1)3limnxn+1[2(n+1)+1]3xn(2n+1)3<1limnx×(2n+12n+3)3<1limnx×limn(2n+12n+3×n1n1)3<1x×limn(2+n12+3n1)3<1x<1

Leave a Reply

Your email address will not be published. Required fields are marked *