Menu Close

Find-the-range-of-values-of-x-x-1-2x-x-2-1-




Question Number 52282 by Tawa1 last updated on 05/Jan/19
Find the range of values of  x     ∣((x − 1)/(2x))∣ ≥ x^2  + 1
Findtherangeofvaluesofxx12xx2+1
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
from graph it clear  ∣((x−1)/(2x))∣=x^2 +1 at x=−0.59  and x=0.313  and  ∣((x−1)/(2x))∣>x^2 +1  when  x  (−0.59,0.313)  so given  ∣((x−1)/(2x))∣≥x^2 +1  [−0.59,0.313]
fromgraphitclearx12x∣=x2+1atx=0.59andx=0.313andx12x∣>x2+1whenx(0.59,0.313)sogivenx12x∣⩾x2+1[0.59,0.313]
Commented by Tawa1 last updated on 05/Jan/19
God bless you sir.     But sir. can it be solve without graph sir. if yes.   please help when you are chanced.
Godblessyousir.Butsir.canitbesolvewithoutgraphsir.ifyes.pleasehelpwhenyouarechanced.
Commented by Tawa1 last updated on 06/Jan/19
Please sir, where can i study questions like this, on which textbook  sir
Pleasesir,wherecanistudyquestionslikethis,onwhichtextbooksir
Commented by Abdo msup. last updated on 05/Jan/19
for x≠0  (e) ⇔∣x−1∣≥2∣x∣(x^2  +1) ⇔  ∣x−1∣−2∣x∣(x^2  +1)≥0  let f(x)=∣x−1∣−2∣x∣(x^2 +1)  so (e)⇔f(x)≥0   x       −∞                0                1                  +∞  ∣x−1∣        −x+1    −x+1   0     x−1  ∣x∣              −x          0         x               x      f(x)  2x^3  +x+1       −2x^3 −3x+1   −2x^3 −x−1  case 1  x≤0  (e) ⇔2x^3  +x+1 ≥0  let find roots of  p(x)=2x^3  +x +1   the roots are  x_1 ∼−0,5898 (real)  x_2 =0,2949 +0,8723i (complex)  x_3 =0,2949−0,8723i (complex) ⇒  f(x)=2(x−x_1 )(x−x_2 )(x−x_3 )  =2(x−x_1 )(x−α−iβ)(x−α+iβ)  =2(x−x_1 )((x−α)^2 +β^2 )  so  f(x)≥0 ⇔x≥x_1   ⇒S_1 =[x_1 ,0[  case 2  0<x≤1    (e) ⇔−2x^3  −3x+1 ≥0 ⇔  2x^3  +3x−1≤0  ...becontinued...
forx0(e)⇔∣x1∣⩾2x(x2+1)x12x(x2+1)0letf(x)=∣x12x(x2+1)so(e)f(x)0x01+x1x+1x+10x1xx0xxf(x)2x3+x+12x33x+12x3x1case1x0(e)2x3+x+10letfindrootsofp(x)=2x3+x+1therootsarex10,5898(real)x2=0,2949+0,8723i(complex)x3=0,29490,8723i(complex)f(x)=2(xx1)(xx2)(xx3)=2(xx1)(xαiβ)(xα+iβ)=2(xx1)((xα)2+β2)sof(x)0xx1S1=[x1,0[case20<x1(e)2x33x+102x3+3x10becontinued
Commented by Tawa1 last updated on 06/Jan/19
God bless you sir
Godblessyousir
Commented by maxmathsup by imad last updated on 06/Jan/19
i hav nt the name but you can find this in old books...
ihavntthenamebutyoucanfindthisinoldbooks
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
1)x≠0  2)((x−1)/(2x))=x^2 +1  2x^3 +2x−x+1=0  2x^3 +x+1=0  x=−0.59  ((−(x−1))/(2x))=x^2 +1  2x^3 +2x+x−1=0  2x^3 +3x−1=0  x=0.313  critical value of x  are −0.59 and 0.313  now put condition  i)1>x>0.313  ii)x<−0.59  iii)0.313 >x>−0.59  ∣((x−1)/(2x))∣>x^2 +1  when 1>x>0.313   right hand side x^2 +1 is +ve  when 1>x>0.313  but ((x−1)/(2x)) is negetive so ∣((x−1)/(2x))∣≱x^2 +1 when 1> x>0.313    but for   x =0.313   (((  x−1))/(2x))=x^2 +1true  ii) x<−0.59  ∣((x−1)/(2x))∣is ((x−1)/(2x)) (put any value of x<−0.59  say x=−1)  LHS =((−1−1)/(2×−1))=1  RHS (−1)^2 +1=2     LHS≯RHS  so when x<−0.59  givencondition  does not hold  so x can not be less than −0.59  iii)now when 0.313> x>−0.59  [say x=0.2  LHS  ∣((x−1)/(2x))∣  =∣((0.2−1)/(2×0.2))∣  =2  RHS   (0.2)^2 +1=1.04  LHS>RHS  so when 0.313>x>−0.59   given clnditionhold  solution set for x [−0.59,0.313]
1)x02)x12x=x2+12x3+2xx+1=02x3+x+1=0x=0.59(x1)2x=x2+12x3+2x+x1=02x3+3x1=0x=0.313criticalvalueofxare0.59and0.313nowputconditioni)1>x>0.313ii)x<0.59iii)0.313>x>0.59x12x∣>x2+1when1>x>0.313righthandsidex2+1is+vewhen1>x>0.313butx12xisnegetivesox12xx2+1when1>x>0.313butforx=0.313(x1)2x=x2+1trueii)x<0.59x12xisx12x(putanyvalueofx<0.59sayx=1)LHS=112×1=1RHS(1)2+1=2LHSRHSsowhenx<0.59givenconditiondoesnotholdsoxcannotbelessthan0.59iii)nowwhen0.313>x>0.59[sayx=0.2LHSx12x=∣0.212×0.2=2RHS(0.2)2+1=1.04LHS>RHSsowhen0.313>x>0.59givenclnditionholdsolutionsetforx[0.59,0.313]
Commented by Tawa1 last updated on 05/Jan/19
God bless you sir.  Is that all sir
Godblessyousir.Isthatallsir
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
pls see final answer
plsseefinalanswer
Commented by Tawa1 last updated on 05/Jan/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *