Menu Close

find-the-range-of-x-y-such-that-x-2-2-y-4-2-49-




Question Number 176501 by infinityaction last updated on 20/Sep/22
 find the range of x+y such that   (x−2)^2 + (y−4)^2  = 49
findtherangeofx+ysuchthat(x2)2+(y4)2=49
Commented by cortano1 last updated on 20/Sep/22
 let x+y=k ⇒x+y−k=0  is tangent to circle   so 7=((∣2+4−k∣)/( (√2)))   ⇒∣k−6∣ = 7(√2)  ⇒−7(√2) ≤ k−6≤7(√2)  ⇒6−7(√2) ≤k≤6+7(√2)  Therefore range of x+y  is [ 6−7(√2) , 6+7(√2) ]
letx+y=kx+yk=0istangenttocircleso7=2+4k2⇒∣k6=7272k672672k6+72Thereforerangeofx+yis[672,6+72]
Answered by Peace last updated on 20/Sep/22
 { ((x=2+7cos(t))),((y=4+7sin(t))) :}t∈[0,2π[  x+y=6+7(sin(t)+cos(t))=6+7(√2)(sin(t+(π/4)))  x+y∈[6−7(√2),6+7(√2)]
{x=2+7cos(t)y=4+7sin(t)t[0,2π[x+y=6+7(sin(t)+cos(t))=6+72(sin(t+π4))x+y[672,6+72]

Leave a Reply

Your email address will not be published. Required fields are marked *