Menu Close

Find-the-real-root-of-x-2-1-x-c-




Question Number 26235 by ajfour last updated on 22/Dec/17
Find the real root of   x^2 +(1/x)=c .
Findtherealrootofx2+1x=c.
Answered by mrW1 last updated on 22/Dec/17
x≠0  x^3 −cx+1=0  Δ=((1/2))^2 +(−(c/3))^3 =(1/4)−(c^3 /(27))  Δ=0⇒c=(3/(^3 (√4)))  case 1: if c=(3/(^3 (√4))), two real solutions.  x_1 =2 ^3 (√(−(1/2)))=−(2/(^3 (√2)))≈−1.587  x_2 =− ^3 (√(−(1/2)))=(1/(^3 (√2)))≈0.794    case 2: if c<(3/(^3 (√4))), one real solution.  x=^3 (√(−(1/2)+(√Δ)))−^3 (√((1/2)+(√Δ)))  e.g. c=1 ⇒ Δ=(1/4)−(1/(27))=((23)/(108))  x=^3 (√(−(1/2)+(√((23)/(108)))))−^3 (√((1/2)+(√((23)/(108)))))≈−1.324    case 3: if c>(3/(^3 (√4))), three real solutions.  e.g. c=3,  r=(√(c^3 /(27)))=1  cos ∅=−(1/(2r))=−(1/2)  ⇒∅=((2π)/3)  x_1 =2 ^3 (√r) cos (∅/3)=2 cos ((2π)/9)≈1.532  x_2 =2 ^3 (√r) cos ((∅+2π)/3)=2 cos ((8π)/9)≈−1.879  x_3 =2 ^3 (√r) cos ((∅+4π)/3)=2 cos ((14π)/9)≈0.347
x0x3cx+1=0Δ=(12)2+(c3)3=14c327Δ=0c=334case1:ifc=334,tworealsolutions.x1=2312=2321.587x2=312=1320.794case2:ifc<334,onerealsolution.x=312+Δ312+Δe.g.c=1Δ=14127=23108x=312+23108312+231081.324case3:ifc>334,threerealsolutions.e.g.c=3,r=c327=1cos=12r=12=2π3x1=23rcos3=2cos2π91.532x2=23rcos+2π3=2cos8π91.879x3=23rcos+4π3=2cos14π90.347
Commented by ajfour last updated on 23/Dec/17
please sir, i dont follow this.  Help me derive formula for this.  how do you obtain Δ as a function  of c ? please see Q.26251  some consrruction method   should be there. Moreover all  cubic equations can be reduced  to this cubic equation, i think..
pleasesir,idontfollowthis.Helpmederiveformulaforthis.howdoyouobtainΔasafunctionofc?pleaseseeQ.26251someconsrructionmethodshouldbethere.Moreoverallcubicequationscanbereducedtothiscubicequation,ithink..
Commented by mrW1 last updated on 23/Dec/17
Yes, every cubic equation can be  reduced to the form  x^3 +px+q=0    ...(i)  let v=(p/(3u)), u^3 −v^3 =−q  and x=u−v  (i) will become  u^3 +q−((p/(3u)))^3 =0  or  (u^3 )^2 +q(u^3 )−((p/3))^3 =0  ..(ii)  ⇒u^3 =((−q±(√(q^2 +4((p/3))^3 )))/2)  =−(q/2)±(√(((q/2))^2 +((p/3))^3 ))  how the solutions will be depends on  Δ=((q/2))^2 +((p/3))^3     one case is e.g.:  ⇒u=^3 (√(−(q/2)±(√(((q/2))^2 +((p/3))^3 ))))  v^3 =u^3 +q=−(q/2)±(√(((q/2))^2 +((p/3))^3 ))+q  v^3 =(q/2)±(√(((q/2))^2 +((p/3))^3 ))  ⇒v=^3 (√((q/2)±(√(((q/2))^2 +((p/3))^3 ))))    x=u−v  ⇒x=^3 (√(−(q/2)±(√(((q/2))^2 +((p/3))^3 ))))−^3 (√((q/2)±(√(((q/2))^2 +((p/3))^3 ))))
Yes,everycubicequationcanbereducedtotheformx3+px+q=0(i)letv=p3u,u3v3=qandx=uv(i)willbecomeu3+q(p3u)3=0or(u3)2+q(u3)(p3)3=0..(ii)u3=q±q2+4(p3)32=q2±(q2)2+(p3)3howthesolutionswillbedependsonΔ=(q2)2+(p3)3onecaseise.g.:u=3q2±(q2)2+(p3)3v3=u3+q=q2±(q2)2+(p3)3+qv3=q2±(q2)2+(p3)3v=3q2±(q2)2+(p3)3x=uvx=3q2±(q2)2+(p3)33q2±(q2)2+(p3)3
Commented by ajfour last updated on 23/Dec/17
great fortune sir. thank you  very sincerely!
greatfortunesir.thankyouverysincerely!
Commented by ajfour last updated on 10/Jun/18
my favourite post.
myfavouritepost.

Leave a Reply

Your email address will not be published. Required fields are marked *