Menu Close

find-the-real-root-of-x-x-3-3-x-5-10-x-7-42-x-9-216-x-11-1320-443-please-if-any-simple-expansion-of-it-then-plz-tell-me-




Question Number 50551 by pooja24 last updated on 17/Dec/18
find the real root of  x−(x^3 /3)+(x^5 /(10))−(x^7 /(42))+(x^9 /(216))−(x^(11) /(1320))+……=.443  please if any simple expansion of it  then plz tell me
$${find}\:{the}\:{real}\:{root}\:{of} \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\frac{{x}^{\mathrm{7}} }{\mathrm{42}}+\frac{{x}^{\mathrm{9}} }{\mathrm{216}}−\frac{{x}^{\mathrm{11}} }{\mathrm{1320}}+\ldots\ldots=.\mathrm{443} \\ $$$${please}\:{if}\:{any}\:{simple}\:{expansion}\:{of}\:{it} \\ $$$${then}\:{plz}\:{tell}\:{me} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
f(x)=x−(x^3 /3)+(x^5 /(10))−(x^7 /(42))+(x^9 /(216))−(x^(11) /(1320))+...  ((df(x))/dx)=1−x^2 +(x^4 /2)−(x^6 /6)+(x^8 /(24))−(x^(10) /(120))+...  let=k=x^2   Right hand side  1−k+(k^2 /(2!))−(k^3 /(3!))+(k^4 /(4!))−(k^5 /(5!))+...  =e^(−k)   =e^(−x^2 )   so ((df(x))/dx)=e^(−x^2 )   f(x)=∫e^(−x^2 ) dx         [from  table e^(−0.812) ≈0.443
$${f}\left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\frac{{x}^{\mathrm{7}} }{\mathrm{42}}+\frac{{x}^{\mathrm{9}} }{\mathrm{216}}−\frac{{x}^{\mathrm{11}} }{\mathrm{1320}}+… \\ $$$$\frac{{df}\left({x}\right)}{{dx}}=\mathrm{1}−{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{\mathrm{2}}−\frac{{x}^{\mathrm{6}} }{\mathrm{6}}+\frac{{x}^{\mathrm{8}} }{\mathrm{24}}−\frac{{x}^{\mathrm{10}} }{\mathrm{120}}+… \\ $$$${let}={k}={x}^{\mathrm{2}} \\ $$$${Right}\:{hand}\:{side} \\ $$$$\mathrm{1}−{k}+\frac{{k}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{k}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{k}^{\mathrm{4}} }{\mathrm{4}!}−\frac{{k}^{\mathrm{5}} }{\mathrm{5}!}+… \\ $$$$={e}^{−{k}} \\ $$$$={e}^{−{x}^{\mathrm{2}} } \\ $$$${so}\:\frac{{df}\left({x}\right)}{{dx}}={e}^{−{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)=\int{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$ \\ $$$$\:\:\:\:\:\left[{from}\:\:{table}\:{e}^{−\mathrm{0}.\mathrm{812}} \approx\mathrm{0}.\mathrm{443}\right. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *