Menu Close

Find-the-real-roots-of-the-equation-cos-4-x-sin-7-x-1-in-the-interval-pi-pi-




Question Number 14977 by Tinkutara last updated on 06/Jun/17
Find the real roots of the equation  cos^4  x + sin^7  x = 1 in the interval [−π, π].
Findtherealrootsoftheequationcos4x+sin7x=1intheinterval[π,π].
Commented by mrW1 last updated on 06/Jun/17
cos x=±1 and sin x=0  or  cos x=0 and sin x=1  ⇒x=−π,0,(π/2),π
cosx=±1andsinx=0orcosx=0andsinx=1x=π,0,π2,π
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir!
ThanksSir!
Answered by myintkhaing last updated on 07/Jun/17
sin^7  x = 1 −cos^4  x  sin^7  x = sin^2  x (2 − sin^2 x)  sin^2  x(sin^5  x+sin^2  x −2) = 0  sin^2  x = 0 or sin^5 x+sin^2 x−2=0  sin x = 0 ⇒ x = 0, ±π  sin^5 x+sin^2 x−2=0 , here −1≤sin x≤1  if sin x = −1, L.H.S ≠ R.H.S  if sin x = 1, L.H.S = R.H.S  x = (π/2)  x = 0,±π,(π/2)
sin7x=1cos4xsin7x=sin2x(2sin2x)sin2x(sin5x+sin2x2)=0sin2x=0orsin5x+sin2x2=0sinx=0x=0,±πsin5x+sin2x2=0,here1sinx1ifsinx=1,L.H.SR.H.Sifsinx=1,L.H.S=R.H.Sx=π2x=0,±π,π2
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir! But why you reject the 2^(nd)   factor?
ThanksSir!Butwhyyourejectthe2ndfactor?
Commented by myintkhaing last updated on 07/Jun/17
My post is edited.
Mypostisedited.
Commented by Tinkutara last updated on 07/Jun/17
But how to identify this that it has no  real root?
Buthowtoidentifythisthatithasnorealroot?
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir!
ThanksSir!
Answered by mrW1 last updated on 07/Jun/17
This question can be generalised to  cos^(2m)  x + sin^(2n+1)  x = 1 with m,n∈N^+   the answer is the same, independent  from m and n.  sin^(2n+1)  x=1−cos^(2m)  x≥0 and ≤1  ⇒0≤sin x≤1    for sin x=0 we get cos^(2m)  x=1 or  cos x=±1, this is possible.    for sin x=1 we get cos^(2m)  x=0 or  cos x=0, this is possible.    for 0<sin x<1 we get  cos^(2m)  x+sin^(2n+1)  x=1  (cos^2  x)^m +sin^(2n+1)  x=1  (1−sin^2  x)^m +sin^(2n+1)  x=1  let t=sin x, 0<t<1  ⇒(1−t^2 )^m +t^(2n+1) =1  (1−t^2 )^m =1−t^(2n+1) =(1−t)(1+t+t^2 +...+t^(2n) )  ⇒(((1−t^2 )^m )/(1−t))=1+t+t^2 +...+t^(2n) >1+t  ⇒(((1−t^2 )^m )/((1−t)(1+t)))>1  ⇒(1−t^2 )^(m−1) >1  but 0<1−t^2 <1 ⇒ (1−t^2 )^(m−1) <1  this is a contradiction, which results  from the assumption that 0<sin x<1.  i.e. the assumption is wrong.    therefore the solution of the equation  cos^(2m)  x + sin^(2n+1)  x = 1 with m,n∈N^+   is only  sin x=0 and cos x=±1   ⇒x=kπ, k∈Z  or  sin x=1 and cos x=0   ⇒x=kπ+(−1)^k (π/2), k∈Z
Thisquestioncanbegeneralisedtocos2mx+sin2n+1x=1withm,nN+theansweristhesame,independentfrommandn.sin2n+1x=1cos2mx0and10sinx1forsinx=0wegetcos2mx=1orcosx=±1,thisispossible.forsinx=1wegetcos2mx=0orcosx=0,thisispossible.for0<sinx<1wegetcos2mx+sin2n+1x=1(cos2x)m+sin2n+1x=1(1sin2x)m+sin2n+1x=1lett=sinx,0<t<1(1t2)m+t2n+1=1(1t2)m=1t2n+1=(1t)(1+t+t2++t2n)(1t2)m1t=1+t+t2++t2n>1+t(1t2)m(1t)(1+t)>1(1t2)m1>1but0<1t2<1(1t2)m1<1thisisacontradiction,whichresultsfromtheassumptionthat0<sinx<1.i.e.theassumptioniswrong.thereforethesolutionoftheequationcos2mx+sin2n+1x=1withm,nN+isonlysinx=0andcosx=±1x=kπ,kZorsinx=1andcosx=0x=kπ+(1)kπ2,kZ
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *