Menu Close

Find-the-real-solution-of-equality-x-3-2x-2-4x-1-0-Please-show-your-workings-




Question Number 122162 by naka3546 last updated on 14/Nov/20
Find  the  real  solution  of  equality :                x^3  − 2x^2  + 4x − 1 = 0  Please  show  your  workings !
Findtherealsolutionofequality:x32x2+4x1=0Pleaseshowyourworkings!
Answered by mathmax by abdo last updated on 14/Nov/20
f(x)=x^3 −2x^2  +4x−1 ⇒f^′ (x)=3x^2 −4x+4   f^′ (x)=0 ⇒3x^2 −4x+4 =0 →Δ^′  =4−12 =−8<0  a=3>0 ⇒f^′ (x)>0 ⇒f is strictly increasing on R  f(0)=−1 and f(1) =1−2+4−1 =2>0   f(0).f(−1)<0 ⇒∃!α ∈]0,1[  /f(α)=0  let begin by x_0 =(1/2)  and  x_(n+1) =x_n −((f(x_n ))/(f^′ (x_n )))     (newton method)  x_1 =x_0 −((f(x_0 ))/(f^′ (x_0 ))) =(1/2)−((f((1/2)))/(f^′ ((1/2))))  we have f((1/2))=(1/8)−(1/2) +2−1  =((1−4)/8) +1 =((−3)/8) +1 =(5/8)  f^′ ((1/2))=(3/4)−2 +4 =(3/4)+2 =((11)/4) ⇒x_1 =(1/2)−(5/8)×(4/(11))  =(1/2)−(5/(22)) =((11−5)/(22)) =(6/(22)) =(3/(11))  x_2 =x_1 −((f(x_1 ))/(f^′ (x_1 )))=(3/(11))−((f((3/(11))))/(f^′ ((3/(11))))) =...  x_4  give a better approximation to this root...
f(x)=x32x2+4x1f(x)=3x24x+4f(x)=03x24x+4=0Δ=412=8<0a=3>0f(x)>0fisstrictlyincreasingonRf(0)=1andf(1)=12+41=2>0f(0).f(1)<0!α]0,1[/f(α)=0letbeginbyx0=12andxn+1=xnf(xn)f(xn)(newtonmethod)x1=x0f(x0)f(x0)=12f(12)f(12)wehavef(12)=1812+21=148+1=38+1=58f(12)=342+4=34+2=114x1=1258×411=12522=11522=622=311x2=x1f(x1)f(x1)=311f(311)f(311)=x4giveabetterapproximationtothisroot

Leave a Reply

Your email address will not be published. Required fields are marked *