Menu Close

Find-the-real-zeros-of-the-polynomial-P-a-x-x-2-1-x-1-2-ax-2-where-a-is-a-given-real-number-




Question Number 152544 by liberty last updated on 29/Aug/21
 Find the real zeros of the polynomial   P_a (x)=(x^2 +1)(x−1)^2 −ax^2   where a is a given real number
FindtherealzerosofthepolynomialPa(x)=(x2+1)(x1)2ax2whereaisagivenrealnumber
Commented by MJS_new last updated on 30/Aug/21
I get  x_1 =((1−(√(a+1))−(√(a−2−2(√(a+1)))))/2) ∈R with a≥8  x_2 =((1−(√(a+1))+(√(a−2−2(√(a+1)))))/2) ∈R with a≥8  x_3 =((1+(√(a+1))−(√(a−2+2(√(a+1)))))/2) ∈R with a≥0  x_4 =((1+(√(a+1))+(√(a−2+2(√(a+1)))))/2) ∈R with a≥0    btw (1) x_2 =(1/x_1 )∧x_4 =(1/x_3 ) because                    P_a (x)=x^4 −2x^3 −(a−2)x^2 −2x+1 symmetric            (2) no real solution for a<0 which is easy to see:                    P_a (x)=0 ⇒ a=(((x^2 +1)(x−1)^2 )/x^2 )≥0
Igetx1=1a+1a22a+12Rwitha8x2=1a+1+a22a+12Rwitha8x3=1+a+1a2+2a+12Rwitha0x4=1+a+1+a2+2a+12Rwitha0btw(1)x2=1x1x4=1x3becausePa(x)=x42x3(a2)x22x+1symmetric(2)norealsolutionfora<0whichiseasytosee:Pa(x)=0a=(x2+1)(x1)2x20
Answered by MJS_new last updated on 30/Aug/21
(x^2 +1)(x−1)^2 −ax^2 =0  x^4 −2x^3 −(a−2)x^2 −2x+1=0  x=t+(1/2)  t^4 −((2a−1)/2)t^2 −(a+1)t−((4a−5)/(16))=0  (t^2 −αt−β)(t^2 +αt−γ)=0  matching the coefficients leads to   { ((α^2 +β+γ=((2a−1)/2))),((αβ−αγ=a+1)),((βγ=−((4a−5)/(16)))) :}  solving (1) and (2) for β and γ ⇒   { ((β=−(α^2 /2)+((a+1)/(2α))+((2a−1)/4))),((γ=−(α^2 /2)−((a+1)/(2α))+((2a−1)/4))),((α^6 −(2a−1)α^4 +(a^2 −1)α^2 −(a+1)^2 =0)) :}  α=(√(z+((2a−1)/3)))  z^3 −(((a−2)^2 )/3)+((2(a+4)(a^2 −10a−2))/(27))=0  testing factors of ((2(a+4)(a^2 −10a−2))/(27)) ⇒  z=((a+4)/3) ⇒  α=(√(a+1)) ⇒  β=((√(a+1))/2)−(3/4)∧γ=−((√(a+1))/2)−(3/4)  ⇒  (t^2 −(√(a+1))t−((2(√(a+1))−3)/4))(t^2 +(√(a+1))t+((2(√(a+1))+3)/4))=0  ⇒  (x^2 −(1+(√(a+1)))x+1)(x^2 −(1−(√(a+1))x+1)=0  ⇒  x=((1+(√(a+1))±(√(a−2+2(√(a+1)))))/2)∨x=((1+(√(a+1))±(√(a−2−2(√(a+1)))))/2)  to get 2 real solutions a≥0  to get 4 real solutions a≥8
(x2+1)(x1)2ax2=0x42x3(a2)x22x+1=0x=t+12t42a12t2(a+1)t4a516=0(t2αtβ)(t2+αtγ)=0matchingthecoefficientsleadsto{α2+β+γ=2a12αβαγ=a+1βγ=4a516solving(1)and(2)forβandγ{β=α22+a+12α+2a14γ=α22a+12α+2a14α6(2a1)α4+(a21)α2(a+1)2=0α=z+2a13z3(a2)23+2(a+4)(a210a2)27=0testingfactorsof2(a+4)(a210a2)27z=a+43α=a+1β=a+1234γ=a+1234(t2a+1t2a+134)(t2+a+1t+2a+1+34)=0(x2(1+a+1)x+1)(x2(1a+1x+1)=0x=1+a+1±a2+2a+12x=1+a+1±a22a+12toget2realsolutionsa0toget4realsolutionsa8
Answered by EDWIN88 last updated on 01/Sep/21
we have (x^2 +1)(x^2 −2x+1)−ax^2 =0  Dividing by x^2  yields    (x+(1/x))(x−2+(1/x))−a=0   let x+(1/x)=h ⇒h^2 −2h−a=0   it follows that h=x+(1/x)=((2±(√(4+4a)))/2)=1±(√a)   which in turn implies that if    a≥0 then the polynomial    P_a (x) has real zeros    x_(1,2) =((1+(√(1+a)) ±(√(a+2(√(1+a)) −2)))/2)  in addition if a≥8 then P_a (x) also   has the real zeros    x_(3,4) =((1−(√(1+a)) ± (√(a−2(√(1+a))−2)))/2)
wehave(x2+1)(x22x+1)ax2=0Dividingbyx2yields(x+1x)(x2+1x)a=0letx+1x=hh22ha=0itfollowsthath=x+1x=2±4+4a2=1±awhichinturnimpliesthatifa0thenthepolynomialPa(x)hasrealzerosx1,2=1+1+a±a+21+a22inadditionifa8thenPa(x)alsohastherealzerosx3,4=11+a±a21+a22

Leave a Reply

Your email address will not be published. Required fields are marked *