Menu Close

Find-the-reduction-formula-x-n-e-ax-dx-




Question Number 84101 by niroj last updated on 09/Mar/20
 Find the reduction formula    ∫x^n e^(ax)  dx
Findthereductionformulaxneaxdx
Answered by MJS last updated on 09/Mar/20
∫x^n e^(ax) dx=       [t=a^(n+1) x^(n+1)  → dx=(dt/(a^(n+1) (n+1)x^n ))]  =(1/(a^(n+1) (n+1)))∫e^t^(1/(n+1))  dt=  this integral is the incomplete Gamma function  =...  =(1/((−1)^n a^(n+1) ))Γ(n+1, −ax) +C
xneaxdx=[t=an+1xn+1dx=dtan+1(n+1)xn]=1an+1(n+1)et1n+1dt=thisintegralistheincompleteGammafunction==1(1)nan+1Γ(n+1,ax)+C
Answered by TANMAY PANACEA last updated on 09/Mar/20
I_n =∫x^n e^(ax) dx  =x^n .(e^(ax) /a)−∫nx^(n−1) .(e^(ax) /a)dx  =((x^n .e^(ax) )/a)−(n/a)I_(n−1)
In=xneaxdx=xn.eaxanxn1.eaxadx=xn.eaxanaIn1
Commented by niroj last updated on 09/Mar/20
 thank  to all
thanktoall

Leave a Reply

Your email address will not be published. Required fields are marked *