Menu Close

find-the-region-converge-of-the-series-and-find-the-sum-n-1-n-2-n-z-1-n-




Question Number 148631 by tabata last updated on 29/Jul/21
find the region converge of the series and   find the sum Σ_(n=1) ^∞  (n/(2^n (z−1)^n )) ?
findtheregionconvergeoftheseriesandfindthesumn=1n2n(z1)n?
Commented by tabata last updated on 29/Jul/21
????
????
Answered by mathmax by abdo last updated on 30/Jul/21
u_n =(n/(2^n (z−1)^n )) ⇒∣(u_(n+1) /u_n )∣=∣((n+1)/(2^(n+1) (z−1)^(n+1) ))×((2^n (z−1)^n )/n)∣  =∣((n+1)/(2n(z−1)))∣→(1/(2∣z−1∣))<1 ⇒2∣z−1∣>1 ⇒∣z−1∣>(1/2) ⇒  donc la serie converge dans Λ={z ∈C /∣z−1∣>(1/2)}
un=n2n(z1)n⇒∣un+1un∣=∣n+12n+1(z1)n+1×2n(z1)nn=∣n+12n(z1)∣→12z1<12z1∣>1⇒∣z1∣>12donclaserieconvergedansΛ={zC/z1∣>12}
Commented by Sozan last updated on 30/Jul/21
sir and the sum how can find ?
sirandthesumhowcanfind?

Leave a Reply

Your email address will not be published. Required fields are marked *