Question Number 148631 by tabata last updated on 29/Jul/21
$${find}\:{the}\:{region}\:{converge}\:{of}\:{the}\:{series}\:{and}\: \\ $$$${find}\:{the}\:{sum}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}}{\mathrm{2}^{{n}} \left({z}−\mathrm{1}\right)^{{n}} }\:? \\ $$
Commented by tabata last updated on 29/Jul/21
$$???? \\ $$
Answered by mathmax by abdo last updated on 30/Jul/21
$$\mathrm{u}_{\mathrm{n}} =\frac{\mathrm{n}}{\mathrm{2}^{\mathrm{n}} \left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{n}} }\:\Rightarrow\mid\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }\mid=\mid\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }×\frac{\mathrm{2}^{\mathrm{n}} \left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}}\mid \\ $$$$=\mid\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2n}\left(\mathrm{z}−\mathrm{1}\right)}\mid\rightarrow\frac{\mathrm{1}}{\mathrm{2}\mid\mathrm{z}−\mathrm{1}\mid}<\mathrm{1}\:\Rightarrow\mathrm{2}\mid\mathrm{z}−\mathrm{1}\mid>\mathrm{1}\:\Rightarrow\mid\mathrm{z}−\mathrm{1}\mid>\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{donc}\:\mathrm{la}\:\mathrm{serie}\:\mathrm{converge}\:\mathrm{dans}\:\Lambda=\left\{\mathrm{z}\:\in\mathrm{C}\:/\mid\mathrm{z}−\mathrm{1}\mid>\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$$$ \\ $$
Commented by Sozan last updated on 30/Jul/21
$${sir}\:{and}\:{the}\:{sum}\:{how}\:{can}\:{find}\:? \\ $$