Menu Close

Find-the-relation-between-q-and-r-so-that-x-3-3px-2-qx-r-is-a-perfect-cube-for-all-value-of-x-




Question Number 80161 by peter frank last updated on 01/Feb/20
Find the relation between  q and r  so  that  x^3 +3px^2 +qx+r is a perfect  cube for all  value of x
$${Find}\:{the}\:{relation}\:{between} \\ $$$${q}\:{and}\:{r}\:\:{so}\:\:{that} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}\:{is}\:{a}\:{perfect} \\ $$$${cube}\:{for}\:{all}\:\:{value}\:{of}\:{x} \\ $$
Commented by peter frank last updated on 31/Jan/20
yes sir
$${yes}\:{sir} \\ $$
Commented by mr W last updated on 31/Jan/20
you mean x^3 +3px^2 +qx+r ?
$${you}\:{mean}\:{x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}\:? \\ $$
Commented by mr W last updated on 31/Jan/20
⇒q=3p^2   ⇒r=p^3   then  x^3 +3px^2 +qx+r=(x+p)^3
$$\Rightarrow{q}=\mathrm{3}{p}^{\mathrm{2}} \\ $$$$\Rightarrow{r}={p}^{\mathrm{3}} \\ $$$${then}\:\:{x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}=\left({x}+{p}\right)^{\mathrm{3}} \\ $$
Commented by mr W last updated on 31/Jan/20
is this what you meant?
$${is}\:{this}\:{what}\:{you}\:{meant}? \\ $$
Commented by peter frank last updated on 31/Jan/20
i dont understand the   question sir.what if  the equation remain  x^3 +3px+qx+r is it   possible find relation  r and q?
$${i}\:{dont}\:{understand}\:{the}\: \\ $$$${question}\:{sir}.{what}\:{if} \\ $$$${the}\:{equation}\:{remain} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{px}+{qx}+{r}\:{is}\:{it}\: \\ $$$${possible}\:{find}\:{relation} \\ $$$${r}\:{and}\:{q}? \\ $$
Commented by mr W last updated on 31/Jan/20
since q=3p^2  and r=p^3  you can say  ((q/3))^3 =r^2  or q^3 =27r^2 .
$${since}\:{q}=\mathrm{3}{p}^{\mathrm{2}} \:{and}\:{r}={p}^{\mathrm{3}} \:{you}\:{can}\:{say} \\ $$$$\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} ={r}^{\mathrm{2}} \:{or}\:{q}^{\mathrm{3}} =\mathrm{27}{r}^{\mathrm{2}} . \\ $$
Commented by MJS last updated on 31/Jan/20
x^3 +3px^2 +qx+r=(x−z)^3   ⇒  z+p=0∧3z^2 −q=0∧z^3 +r=0  z=−p  q=3p^2   r=p^3   ⇒  (q/r)=(3/p)
$${x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}=\left({x}−{z}\right)^{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$${z}+{p}=\mathrm{0}\wedge\mathrm{3}{z}^{\mathrm{2}} −{q}=\mathrm{0}\wedge{z}^{\mathrm{3}} +{r}=\mathrm{0} \\ $$$${z}=−{p} \\ $$$${q}=\mathrm{3}{p}^{\mathrm{2}} \\ $$$${r}={p}^{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$$\frac{{q}}{{r}}=\frac{\mathrm{3}}{{p}} \\ $$
Commented by peter frank last updated on 01/Feb/20
thank you @ mr w @MJS
$${thank}\:{you}\:@\:{mr}\:{w}\:@{MJS} \\ $$
Commented by mr W last updated on 01/Feb/20
MJS sir:  i think (q/r)=(3/p) doesn′t ensure that  x^3 +3px^2 +qx+r=(x−z)^3 . e.g. with  p=2, q=±3, r=±2 we habe  x^3 +3px^2 +qx+r=x^3 +6x^2 ±3x±2. but  both ≠(x−z)^3 .
$${MJS}\:{sir}: \\ $$$${i}\:{think}\:\frac{{q}}{{r}}=\frac{\mathrm{3}}{{p}}\:{doesn}'{t}\:{ensure}\:{that} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}=\left({x}−{z}\right)^{\mathrm{3}} .\:{e}.{g}.\:{with} \\ $$$${p}=\mathrm{2},\:{q}=\pm\mathrm{3},\:{r}=\pm\mathrm{2}\:{we}\:{habe} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{px}^{\mathrm{2}} +{qx}+{r}={x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} \pm\mathrm{3}{x}\pm\mathrm{2}.\:{but} \\ $$$${both}\:\neq\left({x}−{z}\right)^{\mathrm{3}} . \\ $$
Commented by MJS last updated on 01/Feb/20
we need also q=3p^2 ∧r=p^3   p=2 ⇒ q=12∧r=8; z=−2  x^3 +6x^2 +12x+8=(x+2)^3
$$\mathrm{we}\:\mathrm{need}\:\mathrm{also}\:{q}=\mathrm{3}{p}^{\mathrm{2}} \wedge{r}={p}^{\mathrm{3}} \\ $$$${p}=\mathrm{2}\:\Rightarrow\:{q}=\mathrm{12}\wedge{r}=\mathrm{8};\:{z}=−\mathrm{2} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{8}=\left({x}+\mathrm{2}\right)^{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *