Menu Close

Find-the-remainder-when-2014-is-divisible-by-2017-




Question Number 62452 by Tawa1 last updated on 21/Jun/19
Find the remainder when   2014!  is divisible by  2017
Findtheremainderwhen2014!isdivisibleby2017
Answered by Rasheed.Sindhi last updated on 21/Jun/19
Wilson′s Theorm:         (p−1)!≡−1(mod p) : p∈P     ∵    2017∈P      ∴ (2017−1)!≡−1(mod 2017)            2016!≡−1(mod 2017)                 2016!≡−1+2017=2016(mod 2017)            2015!≡1(mod 2017)            2(2015!)≡2(mod 2017)            2(2015!)≡2−2017=−2015(mod 2017)            2(2014!)≡−1(mod 2017)            2(2014!)≡−1+2017=2016(mod 2017)            2014!≡2016/2(mod 2017)            2014!≡1008(mod 2017)        Remainder 1008
WilsonsTheorm:(p1)!1(modp):pP2017P(20171)!1(mod2017)2016!1(mod2017)2016!1+2017=2016(mod2017)2015!1(mod2017)2(2015!)2(mod2017)2(2015!)22017=2015(mod2017)2(2014!)1(mod2017)2(2014!)1+2017=2016(mod2017)2014!2016/2(mod2017)2014!1008(mod2017)Remainder1008
Commented by Tawa1 last updated on 21/Jun/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *