Menu Close

Find-the-remainder-when-2014-is-divisible-by-2017-




Question Number 62452 by Tawa1 last updated on 21/Jun/19
Find the remainder when   2014!  is divisible by  2017
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\:\:\mathrm{2014}!\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\mathrm{2017} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jun/19
Wilson′s Theorm:         (p−1)!≡−1(mod p) : p∈P     ∵    2017∈P      ∴ (2017−1)!≡−1(mod 2017)            2016!≡−1(mod 2017)                 2016!≡−1+2017=2016(mod 2017)            2015!≡1(mod 2017)            2(2015!)≡2(mod 2017)            2(2015!)≡2−2017=−2015(mod 2017)            2(2014!)≡−1(mod 2017)            2(2014!)≡−1+2017=2016(mod 2017)            2014!≡2016/2(mod 2017)            2014!≡1008(mod 2017)        Remainder 1008
$${Wilson}'{s}\:{Theorm}: \\ $$$$\:\:\:\:\:\:\:\left({p}−\mathrm{1}\right)!\equiv−\mathrm{1}\left({mod}\:{p}\right)\::\:{p}\in\mathbb{P} \\ $$$$\:\:\:\because\:\:\:\:\mathrm{2017}\in\mathbb{P} \\ $$$$\:\:\:\:\therefore\:\left(\mathrm{2017}−\mathrm{1}\right)!\equiv−\mathrm{1}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2016}!\equiv−\mathrm{1}\left({mod}\:\mathrm{2017}\right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2016}!\equiv−\mathrm{1}+\mathrm{2017}=\mathrm{2016}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2015}!\equiv\mathrm{1}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{2015}!\right)\equiv\mathrm{2}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{2015}!\right)\equiv\mathrm{2}−\mathrm{2017}=−\mathrm{2015}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{2014}!\right)\equiv−\mathrm{1}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{2014}!\right)\equiv−\mathrm{1}+\mathrm{2017}=\mathrm{2016}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2014}!\equiv\mathrm{2016}/\mathrm{2}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{2014}!\equiv\mathrm{1008}\left({mod}\:\mathrm{2017}\right) \\ $$$$\:\:\:\:\:\:{Remainder}\:\mathrm{1008} \\ $$
Commented by Tawa1 last updated on 21/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *