Menu Close

Find-the-remainder-when-x-203-1-is-divided-by-x-4-1-




Question Number 31194 by U Htay KyawMyint last updated on 03/Mar/18
Find the remainder when x^(203) −1  is divided by x^4 −1.
$${Find}\:{the}\:{remainder}\:{when}\:{x}^{\mathrm{203}} −\mathrm{1} \\ $$$${is}\:{divided}\:{by}\:{x}^{\mathrm{4}} −\mathrm{1}. \\ $$
Commented by 6123 last updated on 04/Mar/18
x^4 =1  (x^4 )^(50) (x^3 )−1 = (1)^(50) (x^3 )−1 = x^3 −1
$${x}^{\mathrm{4}} =\mathrm{1} \\ $$$$\left({x}^{\mathrm{4}} \right)^{\mathrm{50}} \left({x}^{\mathrm{3}} \right)−\mathrm{1}\:=\:\left(\mathrm{1}\right)^{\mathrm{50}} \left({x}^{\mathrm{3}} \right)−\mathrm{1}\:=\:{x}^{\mathrm{3}} −\mathrm{1} \\ $$
Answered by math solver last updated on 03/Mar/18
x^3 −1 .
$${x}^{\mathrm{3}} −\mathrm{1}\:. \\ $$
Commented by MJS last updated on 04/Mar/18
yes, but why?
$$\mathrm{yes},\:\mathrm{but}\:\mathrm{why}? \\ $$
Answered by mrW2 last updated on 04/Mar/18
x^(203) −1  =x^3 ×x^(200) −1  =x^3 ×(x^4 )^(50) −1  =x^3 ×[(x^4 −1)+1]^(50) −1  =x^3 ×[(......)+1]−1  with (......)=terms with factor(x^4 −1)  =x^3 (......)+(x^3 −1)  ⇒when 2^(203) −1 is divided by x^4 −1,  the remainder is x^3 −1.
$${x}^{\mathrm{203}} −\mathrm{1} \\ $$$$={x}^{\mathrm{3}} ×{x}^{\mathrm{200}} −\mathrm{1} \\ $$$$={x}^{\mathrm{3}} ×\left({x}^{\mathrm{4}} \right)^{\mathrm{50}} −\mathrm{1} \\ $$$$={x}^{\mathrm{3}} ×\left[\left({x}^{\mathrm{4}} −\mathrm{1}\right)+\mathrm{1}\right]^{\mathrm{50}} −\mathrm{1} \\ $$$$={x}^{\mathrm{3}} ×\left[\left(……\right)+\mathrm{1}\right]−\mathrm{1} \\ $$$${with}\:\left(……\right)={terms}\:{with}\:{factor}\left({x}^{\mathrm{4}} −\mathrm{1}\right) \\ $$$$={x}^{\mathrm{3}} \left(……\right)+\left({x}^{\mathrm{3}} −\mathrm{1}\right) \\ $$$$\Rightarrow{when}\:\mathrm{2}^{\mathrm{203}} −\mathrm{1}\:{is}\:{divided}\:{by}\:{x}^{\mathrm{4}} −\mathrm{1}, \\ $$$${the}\:{remainder}\:{is}\:{x}^{\mathrm{3}} −\mathrm{1}. \\ $$
Commented by MJS last updated on 04/Mar/18
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *