Menu Close

find-the-residue-of-f-z-sin-z-cos-z-3-1-




Question Number 148174 by tabata last updated on 25/Jul/21
find the residue of  f(z)=((sin(z))/(cos(z^3 )−1))
findtheresidueoff(z)=sin(z)cos(z3)1
Answered by mathmax by abdo last updated on 25/Jul/21
cosu∼1−(u^2 /2) ⇒cos(z^3 )∼1−(z^6 /2) ⇒cos(z^3 )−1∼−(z^6 /2) ⇒  f(z)∼−2((sinz)/z^6 )  we have  sinz =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))z^(2n+1)   =z−(z^3 /(3!))+(z^5 /(5!))−(z^7 /(7!)) ⇒f(z)∼−(2/z^6 )(z−(z^3 /(3!))+(z^5 /(5!))−(z^7 /(7!))+...)  ⇒f(z)∼−(2/z^5 )+(2/(3!z^3 ))−(2/(5!z))+... ⇒  Res(f)=−(2/(5.4.3.2))=−(1/(60))
cosu1u22cos(z3)1z62cos(z3)1z62f(z)2sinzz6wehavesinz=n=0(1)n(2n+1)!z2n+1=zz33!+z55!z77!f(z)2z6(zz33!+z55!z77!+)f(z)2z5+23!z325!z+Res(f)=25.4.3.2=160
Answered by Olaf_Thorendsen last updated on 25/Jul/21
f(z) = ((sinz)/(cos(z^3 )−1))  f(z) = ((sinz)/((1−(z^6 /2)+(z^(12) /(24))−(z^(18) /(720))...)−1))  f(z) = ((sinz)/(−(z^6 /2)+(z^(12) /(24))−(z^(18) /(720))+...))  f(z) = −(2/z^6 ).((sinz)/(1−((z^6 /(12))−(z^(12) /(360))+...)))  f(z) = −((2sinz)/z^6 )[1+((z^6 /(12))−(z^(12) /(360))+...)+((z^6 /(12))−(z^(12) /(360))+...)^2 +...]  f(z) = −((2(z−(z^3 /6)+(z^5 /(120))...))/z^6 )[1+((z^6 /(12))−(z^(12) /(360))+...)+((z^6 /(12))−(z^(12) /(360))+...)^2 +...]  f(z) = −(2/z^5 )+(1/(3z^3 ))−(1/(60z))−((421)/(2520)) z+..  The term in z^(−1)  is −(1/(60))  ⇒The residue is −(1/(60)).
f(z)=sinzcos(z3)1f(z)=sinz(1z62+z1224z18720)1f(z)=sinzz62+z1224z18720+f(z)=2z6.sinz1(z612z12360+)f(z)=2sinzz6[1+(z612z12360+)+(z612z12360+)2+]f(z)=2(zz36+z5120)z6[1+(z612z12360+)+(z612z12360+)2+]f(z)=2z5+13z3160z4212520z+..Theterminz1is160Theresidueis160.

Leave a Reply

Your email address will not be published. Required fields are marked *