Question Number 148174 by tabata last updated on 25/Jul/21
$${find}\:{the}\:{residue}\:{of}\:\:{f}\left({z}\right)=\frac{{sin}\left({z}\right)}{{cos}\left({z}^{\mathrm{3}} \right)−\mathrm{1}} \\ $$
Answered by mathmax by abdo last updated on 25/Jul/21
$$\mathrm{cosu}\sim\mathrm{1}−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{cos}\left(\mathrm{z}^{\mathrm{3}} \right)\sim\mathrm{1}−\frac{\mathrm{z}^{\mathrm{6}} }{\mathrm{2}}\:\Rightarrow\mathrm{cos}\left(\mathrm{z}^{\mathrm{3}} \right)−\mathrm{1}\sim−\frac{\mathrm{z}^{\mathrm{6}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\sim−\mathrm{2}\frac{\mathrm{sinz}}{\mathrm{z}^{\mathrm{6}} }\:\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{sinz}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{z}^{\mathrm{2n}+\mathrm{1}} \\ $$$$=\mathrm{z}−\frac{\mathrm{z}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{z}^{\mathrm{5}} }{\mathrm{5}!}−\frac{\mathrm{z}^{\mathrm{7}} }{\mathrm{7}!}\:\Rightarrow\mathrm{f}\left(\mathrm{z}\right)\sim−\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{6}} }\left(\mathrm{z}−\frac{\mathrm{z}^{\mathrm{3}} }{\mathrm{3}!}+\frac{\mathrm{z}^{\mathrm{5}} }{\mathrm{5}!}−\frac{\mathrm{z}^{\mathrm{7}} }{\mathrm{7}!}+…\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{z}\right)\sim−\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{5}} }+\frac{\mathrm{2}}{\mathrm{3}!\mathrm{z}^{\mathrm{3}} }−\frac{\mathrm{2}}{\mathrm{5}!\mathrm{z}}+…\:\Rightarrow \\ $$$$\mathrm{Res}\left(\mathrm{f}\right)=−\frac{\mathrm{2}}{\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{60}} \\ $$
Answered by Olaf_Thorendsen last updated on 25/Jul/21
$${f}\left({z}\right)\:=\:\frac{\mathrm{sin}{z}}{\mathrm{cos}\left({z}^{\mathrm{3}} \right)−\mathrm{1}} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{sin}{z}}{\left(\mathrm{1}−\frac{{z}^{\mathrm{6}} }{\mathrm{2}}+\frac{{z}^{\mathrm{12}} }{\mathrm{24}}−\frac{{z}^{\mathrm{18}} }{\mathrm{720}}…\right)−\mathrm{1}} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{sin}{z}}{−\frac{{z}^{\mathrm{6}} }{\mathrm{2}}+\frac{{z}^{\mathrm{12}} }{\mathrm{24}}−\frac{{z}^{\mathrm{18}} }{\mathrm{720}}+…} \\ $$$${f}\left({z}\right)\:=\:−\frac{\mathrm{2}}{{z}^{\mathrm{6}} }.\frac{\mathrm{sin}{z}}{\mathrm{1}−\left(\frac{{z}^{\mathrm{6}} }{\mathrm{12}}−\frac{{z}^{\mathrm{12}} }{\mathrm{360}}+…\right)} \\ $$$${f}\left({z}\right)\:=\:−\frac{\mathrm{2sin}{z}}{{z}^{\mathrm{6}} }\left[\mathrm{1}+\left(\frac{{z}^{\mathrm{6}} }{\mathrm{12}}−\frac{{z}^{\mathrm{12}} }{\mathrm{360}}+…\right)+\left(\frac{{z}^{\mathrm{6}} }{\mathrm{12}}−\frac{{z}^{\mathrm{12}} }{\mathrm{360}}+…\right)^{\mathrm{2}} +…\right] \\ $$$${f}\left({z}\right)\:=\:−\frac{\mathrm{2}\left({z}−\frac{{z}^{\mathrm{3}} }{\mathrm{6}}+\frac{{z}^{\mathrm{5}} }{\mathrm{120}}…\right)}{{z}^{\mathrm{6}} }\left[\mathrm{1}+\left(\frac{{z}^{\mathrm{6}} }{\mathrm{12}}−\frac{{z}^{\mathrm{12}} }{\mathrm{360}}+…\right)+\left(\frac{{z}^{\mathrm{6}} }{\mathrm{12}}−\frac{{z}^{\mathrm{12}} }{\mathrm{360}}+…\right)^{\mathrm{2}} +…\right] \\ $$$${f}\left({z}\right)\:=\:−\frac{\mathrm{2}}{{z}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{3}{z}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{60}{z}}−\frac{\mathrm{421}}{\mathrm{2520}}\:{z}+.. \\ $$$$\mathrm{The}\:\mathrm{term}\:\mathrm{in}\:{z}^{−\mathrm{1}} \:\mathrm{is}\:−\frac{\mathrm{1}}{\mathrm{60}} \\ $$$$\Rightarrow\mathrm{The}\:\mathrm{residue}\:\mathrm{is}\:−\frac{\mathrm{1}}{\mathrm{60}}. \\ $$