Menu Close

find-the-root-of-x-4-4x-3-11x-2-14x-30-0-




Question Number 172025 by Mikenice last updated on 23/Jun/22
find the root of   x^4 +4x^3 +11x^2 +14x−30=0.
$${find}\:{the}\:{root}\:{of}\: \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{11}{x}^{\mathrm{2}} +\mathrm{14}{x}−\mathrm{30}=\mathrm{0}. \\ $$
Answered by thfchristopher last updated on 23/Jun/22
x^4 +4x^3 +11x^2 +14x−30=0  ⇒(x−1)(x^3 +5x^2 +16x+30)=0  ⇒(x−1)(x+3)(x^2 +2x+10)=0  ⇒(x−1)(x+3)(x+1+3i)(x+1−3i)=0  ∴ x=1, −3, −1±3i
$${x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{11}{x}^{\mathrm{2}} +\mathrm{14}{x}−\mathrm{30}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{16}{x}+\mathrm{30}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{1}\right)\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{1}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}+\mathrm{3}{i}\right)\left({x}+\mathrm{1}−\mathrm{3}{i}\right)=\mathrm{0} \\ $$$$\therefore\:{x}=\mathrm{1},\:−\mathrm{3},\:−\mathrm{1}\pm\mathrm{3}{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *