find-the-rsdius-of-convergence-for-theserie-n-0-x-n-2n-1-and-calculate-its-sum-s-x-find-the-value-of-n-0-1-2-n-2n-1- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 26192 by abdo imad last updated on 22/Dec/17 findthersdiusofconvergencefortheserie∑n=0∝xn2n+1andcalculateitssums(x)findthevalueof∑n=0∝12n(2n+1). Commented by prakash jain last updated on 22/Dec/17 ratiotestlimn→∞∣xn+12n+1⋅2nxn∣=∣x∣limn→∞2n2n+1=∣x∣∣x∣<1⇒seriesconverges∣x∣>1⇒seriesdiverges____x=1∑n=0∞12n+1,weknowitdivergesradiusofconvergence∣x∣<1 Commented by abdo imad last updated on 22/Dec/17 letputan(x)=xn2n+1perxnot0/an+1(x)an(x)/=/xn+12n+3(xn2n+1)−1/=/2n+12n+3x/=2n+12n+3/x/andlimn−>∝/an+1(x)an(x)/=/x/⇒if/x/<1theserieisconvergentif/x/>1theseriedivergeifx=1alsotheseriedivergeifx=−1∑n⩾0(−1)n2n+1isconvergentbecauseitsaalterneserieetS(x)=∑n=0∝xn2n+1thesumfor/x/<1case10<x<1S(x)=∑n=0∝(x)2n2n+1=1x∑n=0∝(x)2n+12n+1=1xφ(x)withφ(t)=∑n=0∝t2n+12n+1and/t/<1∂φ/∂t=∑n=0∝t2n=11−t2⇒φ(t)=∫dt1−t2+λ=12ln/1+t1−t/+λλ=φ(0)=0⇒S(x)=12xln(1+x1−x)case2−1<x<0S(x)=∑n=0∝(−1)n(−x)2n2n+1=1−x∑n=0∝(−1)n(−x)2n+12n+1=1−xψ(−x)withψ(t)=∑n=0∝(−1)nt2n+12n+1and/t/<1∂ψ/∂t=∑n=0∝(−1)nt2n=∑n=0∝(−t2)n=11+t2⇒ψ(t)=∫dt1+t2+κ=arctant+κk=ψ(0)=0⇒S(x)=artan(−x)−x.valueofS=∑n=0∝12n(2n+1)wehaveprovedthat∑n=0∝xn2n+1=12xln(1+x1−x)if0x<1wetakex=12⇒S=1212ln(1+121−12)=12ln(1+2−1+2) Commented by prakash jain last updated on 22/Dec/17 Thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-6-x-cos-5-x-sin-2-x-cos-2-x-dx-Next Next post: 1-x-2-y-2xy-2y-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.