Menu Close

find-the-rsdius-of-convergence-for-theserie-n-0-x-n-2n-1-and-calculate-its-sum-s-x-find-the-value-of-n-0-1-2-n-2n-1-




Question Number 26192 by abdo imad last updated on 22/Dec/17
find the rsdius of convergence for theserie  Σ_(n=0) ^∝  (x^n /(2n+1)) and calculate its sum s(x)  find the value of  Σ_(n=0) ^∝   (1/(2^n (2n+1)))  .
findthersdiusofconvergencefortheserien=0xn2n+1andcalculateitssums(x)findthevalueofn=012n(2n+1).
Commented by prakash jain last updated on 22/Dec/17
ratio test  lim_(n→∞) ∣(x^(n+1) /(2n+1))∙((2n)/x^n )∣=∣x∣lim_(n→∞) ((2n)/(2n+1))=∣x∣  ∣x∣<1 ⇒series converges  ∣x∣>1⇒series diverges  ____  x=1  Σ_(n=0) ^∞ (1/(2n+1)) , we know it diverges  radius of convergence ∣x∣<1
ratiotestlimnxn+12n+12nxn∣=∣xlimn2n2n+1=∣xx∣<1seriesconvergesx∣>1seriesdiverges____x=1n=012n+1,weknowitdivergesradiusofconvergencex∣<1
Commented by abdo imad last updated on 22/Dec/17
let put  a_n (x)  = ((x^n      )/(2n+1 ))    per x not0  /((a_(n+1) (x))/(a_n (x)))/=/ (x^(n+1) /(2n+3)) ((x^n /(2n+1)))^(−1) /  =/((2n+1)/(2n+3))x/  = ((2n+1)/(2n+3))/x/  and lim_(n−>∝)   / ((a_(n+1) (x))/a_(n(x)) )/= /x/⇒  if  /x/<1 the serie is convergent  if /x/>1 the serie diverge  if x=1 also the serie diverge  if x=−1    Σ_(n≥0)  (((−1)^n )/(2n+1)) is convergent because its a alterne serie  et S(x)=  Σ_(n=0) ^(∝ )  (x^n /(2n+1)) the sum for /x/<1  case1    0<x<1     S(x)  =  Σ_(n=0) ^∝  ((((√x))^(2n) )/(2n+1))  = (1/( (√x))) Σ_(n=0) ^∝  ((((√x))^(2n+1) )/(2n+1))  =  (1/( (√x))) ϕ((√x))with  ϕ(t)  = Σ_(n=0) ^∝  (t^(2n+1) /(2n+1))   and /t/<1  ∂ϕ/∂t  =  Σ_(n=0) ^∝  t^(2n)    = (1/(1−t^2 )) ⇒  ϕ(t) =∫ (dt/(1−t^2 )) +λ  =(1/2)ln/((1+t)/(1−t))/+λ       λ=ϕ(0)=0⇒  S(x)=  (1/(2(√x)))ln(((1+(√x))/(1−(√x))) )  case2      −1<x<0     S(x)=  Σ_(n=0) ^(∝ )  (((−1)^n ((√(−x)))^(2n) )/(2n+1))  = (1/( (√(−x)))) Σ_(n=0) ^∝   (((−1)^n ((√(−x)))^(2n+1) )/(2n+1))= (1/( (√(−x))))ψ((√(−x)))   with  ψ(t)=  Σ_(n=0) ^∝  (((−1)^n  t^(2n+1) )/(2n+1))   and  /t/<1  ∂ψ/∂t = Σ_(n=0) ^∝  (−1)^n  t^(2n) = Σ_(n=0) ^∝  (−t^2 )^n =   (1/(1+t^2 ))  ⇒  ψ(t)= ∫ (dt/(1+t^2 ))  +κ  =  arctant +κ       k=ψ(0)=0⇒  S(x)= ((artan((√(−x))))/( (√(−x))))  .  value of S=  Σ_(n=0) ^∝    (1/(2^n (2n+1)))   we have proved that Σ_(n=0) ^∝   (x^n /(2n+1))  =(1/(2(√x))) ln(((1+(√x))/(1−(√x)))) if 0x<1  we take x=(1/2)⇒      S=  (1/(2(√(1/2))))ln(  ((1+(√(1/2)))/(1−(√(1/2)))))  =(1/( (√2))) ln(((1+(√2))/(−1+(√2))))
letputan(x)=xn2n+1perxnot0/an+1(x)an(x)/=/xn+12n+3(xn2n+1)1/=/2n+12n+3x/=2n+12n+3/x/andlimn>∝/an+1(x)an(x)/=/x/if/x/<1theserieisconvergentif/x/>1theseriedivergeifx=1alsotheseriedivergeifx=1n0(1)n2n+1isconvergentbecauseitsaalterneserieetS(x)=n=0xn2n+1thesumfor/x/<1case10<x<1S(x)=n=0(x)2n2n+1=1xn=0(x)2n+12n+1=1xφ(x)withφ(t)=n=0t2n+12n+1and/t/<1φ/t=n=0t2n=11t2φ(t)=dt1t2+λ=12ln/1+t1t/+λλ=φ(0)=0S(x)=12xln(1+x1x)case21<x<0S(x)=n=0(1)n(x)2n2n+1=1xn=0(1)n(x)2n+12n+1=1xψ(x)withψ(t)=n=0(1)nt2n+12n+1and/t/<1ψ/t=n=0(1)nt2n=n=0(t2)n=11+t2ψ(t)=dt1+t2+κ=arctant+κk=ψ(0)=0S(x)=artan(x)x.valueofS=n=012n(2n+1)wehaveprovedthatn=0xn2n+1=12xln(1+x1x)if0x<1wetakex=12S=1212ln(1+12112)=12ln(1+21+2)
Commented by prakash jain last updated on 22/Dec/17
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *