Menu Close

Find-the-second-derivative-of-f-x-5x-9-find-f-




Question Number 24733 by chernoaguero@gmail.com last updated on 25/Nov/17
Find the second derivative of  f(x) =(√(5x+9))  find f^(′′)
Findthesecondderivativeoff(x)=5x+9findf
Commented by chernoaguero@gmail.com last updated on 25/Nov/17
Using the first principle method
Usingthefirstprinciplemethod
Answered by jota+ last updated on 25/Nov/17
((Δy)/(Δx))  =(((√(5(x+△x)+9))−(√(5x+9)))/(△x))     =((5△x)/(△x[(√(5(x+△x)+9))+(√(5x+9))]))   (dy/dx)=(5/(2(√(5x+9)))).
ΔyΔx=5(x+x)+95x+9x=5xx[5(x+x)+9+5x+9]dydx=525x+9.
Commented by chernoaguero@gmail.com last updated on 25/Nov/17
l mean the second derivative  now continue from ur ans using   the first principal too
lmeanthesecondderivativenowcontinuefromuransusingthefirstprincipaltoo
Commented by ajfour last updated on 25/Nov/17
(d^2 y/dx^2 )=(5/2)lim_(△x→0)  [(((1/( (√(5(x+△x)))))−(1/( (√(5x+9)))))/(△x))]     =(5/2)lim_(△x→0)  [(((√(5x+9))−(√(5(x+△x)))/( (√(5x+9)) (√(5(x+△x)+9)) (△x)))]  =(5/2)lim_(△x→0)  [((−5△x)/(△x))]×     lim_(△x→0)  [(1/( (√(5x+9)) (√(5(x+△x)+9))))]×      lim_(△x→0)  [(1/( (√(5x+9))+(√(5(x+△x)+9))))]  =(5/2)×(−5)×((1/(5x+9)))×((1/(2(√(5x+9)))))  = −((25)/4)(5x+9)^(−3/2)  .
d2ydx2=52limx0[15(x+x)15x+9x]=52limx0[5x+95(x+x5x+95(x+x)+9(x)]=52limx0[5xx]×limx0[15x+95(x+x)+9]×limx0[15x+9+5(x+x)+9]=52×(5)×(15x+9)×(125x+9)=254(5x+9)3/2.
Commented by chernoaguero@gmail.com last updated on 26/Nov/17
Thank you sir thatz correct
Thankyousirthatzcorrect

Leave a Reply

Your email address will not be published. Required fields are marked *