Menu Close

find-the-sequence-a-n-wich-verify-n-1-x-n-n-0-x-n-n-1-n-0-a-n-x-n-also-find-the-radius-of-this-serie-




Question Number 49961 by maxmathsup by imad last updated on 12/Dec/18
find the sequence (a_n ) wich verify   (Σ_(n=1) ^∞  x^n )(Σ_(n=0) ^∞   (((−x)^n )/(n+1)))=Σ_(n=0) ^∞  a_n x^n   also find the radius of this serie.
findthesequence(an)wichverify(n=1xn)(n=0(x)nn+1)=n=0anxnalsofindtheradiusofthisserie.
Commented by Abdo msup. last updated on 13/Dec/18
let α_n =1 ∀n ∈ N and β_n =(((−1)^n )/(n+1)) so  (Σ_(n=1) ^∞  x^n ).(Σ_(n=0) ^∞  (((−1)^n )/(n+1)) x^n ) =(Σ_(n=0) ^∞  α_n x^n ).(Σ_(n=0) ^∞  β_n x^n )  Σ_(n=0) ^∞  a_n x^n   / a_n =Σ_(i+j=n)  α_i  β_j =Σ_(i=0) ^n   (((−1)^(n−i) )/(n−i +1))  ⇒ a_n =Σ_(p=0) ^n   (((−1)^p )/(p+1)) =Σ_(p=1) ^(n+1)    (((−1)^(p−1) )/p)  we have Radius(Σ x^n )=1 and Radiud(Σ (((−x)^n )/(n+1)))=1 ⇒  Re>adius(Σ a_n x^n )≤1 .
letαn=1nNandβn=(1)nn+1so(n=1xn).(n=0(1)nn+1xn)=(n=0αnxn).(n=0βnxn)n=0anxn/an=i+j=nαiβj=i=0n(1)nini+1an=p=0n(1)pp+1=p=1n+1(1)p1pwehaveRadius(Σxn)=1andRadiud(Σ(x)nn+1)=1Re>adius(Σanxn)1.

Leave a Reply

Your email address will not be published. Required fields are marked *