Menu Close

find-the-sequence-u-n-wich-verify-u-n-2-u-n-1-1-2-n-




Question Number 26400 by abdo imad last updated on 25/Dec/17
find the sequence (u_n ) wich verify u_n  −2 u_(n−1)  +1= 2^n
$${find}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:{wich}\:{verify}\:{u}_{{n}} \:−\mathrm{2}\:{u}_{{n}−\mathrm{1}} \:+\mathrm{1}=\:\mathrm{2}^{{n}} \\ $$
Answered by prakash jain last updated on 25/Dec/17
x−2=0  ⇒x=2  homogenous solution=c2^n   particular solution  u_n −2u_(n−1) =2^n −1  Here we will solve for 2 parts  part I  u_n −2u_(n−1) =−1⇒u_n  (part 1)=1  part II  u_n −2u_(n−1) =2^n   u_n =an2^n   an2^n −a(n−1)2^n =2^n   ⇒a=1  particular solution  u_n =n2^n +1  u_n =c2^n +n2^n +1
$${x}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{2} \\ $$$${homogenous}\:{solution}={c}\mathrm{2}^{{n}} \\ $$$${particular}\:{solution} \\ $$$${u}_{{n}} −\mathrm{2}{u}_{{n}−\mathrm{1}} =\mathrm{2}^{{n}} −\mathrm{1} \\ $$$$\mathrm{Here}\:\mathrm{we}\:\mathrm{will}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{2}\:\mathrm{parts} \\ $$$$\mathrm{part}\:\mathrm{I} \\ $$$${u}_{{n}} −\mathrm{2}{u}_{{n}−\mathrm{1}} =−\mathrm{1}\Rightarrow{u}_{{n}} \:\left(\mathrm{part}\:\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{part}\:\mathrm{II} \\ $$$${u}_{{n}} −\mathrm{2}{u}_{{n}−\mathrm{1}} =\mathrm{2}^{{n}} \\ $$$${u}_{{n}} ={an}\mathrm{2}^{{n}} \\ $$$${an}\mathrm{2}^{{n}} −{a}\left({n}−\mathrm{1}\right)\mathrm{2}^{{n}} =\mathrm{2}^{{n}} \\ $$$$\Rightarrow{a}=\mathrm{1} \\ $$$${particular}\:{solution} \\ $$$${u}_{{n}} ={n}\mathrm{2}^{{n}} +\mathrm{1} \\ $$$${u}_{{n}} ={c}\mathrm{2}^{{n}} +{n}\mathrm{2}^{{n}} +\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *