Menu Close

find-the-series-n-2-1-n-1-3n-1-1-3n-2-




Question Number 110222 by mathdave last updated on 28/Aug/20
find the series  Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n−2))]
findtheseriesn=2(1)n[13n+1+13n2]
Answered by mnjuly1970 last updated on 27/Aug/20
find the series  Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n+2))]
findtheseriesn=2(1)n[13n+1+13n+2]
Answered by mathmax by abdo last updated on 28/Aug/20
S =Σ_(n=2) ^∞  (((−1)^n )/(3n+1)) +Σ_(n=2) ^∞  (((−1)^n )/(3n−2)) =A +B  A =Σ_(n=0) ^(∞ )  (((−1)^n )/(3n+1)) −(1−(1/4)) =−(3/4)+Σ_(n=0) ^∞  (((−1)^n )/(3n+1))  let ϕ(x) =Σ_(n=0) ^∞  (−1)^n  (x^(3n+1) /(3n+1))  (∣x∣≤1)  ϕ^′ (x) =Σ_(n=0) ^∞ (−1)^n  x^(3n)  =(1/(1+x^3 )) ⇒ϕ(x) =∫_0 ^x  (dx/(1+x^3 )) +c  (c=ϕ(0)=0)  F(x) =(1/((x+1)(x^2 −x+1))) =(a/(x+1)) +((bx +c)/(x^2 −x+1))  a=(1/3)  ,lim_(x→+∞) xF(x) =0 =a+b ⇒b=−(1/3)  F(0) =1 =a +c ⇒c=1−(1/3) =(2/3) ⇒F(x)=(1/(3(x+1)))+((−(1/3)x+(2/3))/(x^2 −x+1))  A =∫_0 ^1  (dx/(x^3 +1)) =(1/3)[ln∣x+1∣]_0 ^1 −(1/6)∫_0 ^1   ((2x−1−1)/(x^2 −x+1))dx +(2/3)∫_0 ^1  (dx/(x^2 −x+1))  =((ln2)/3) −(1/6)[ln(x^2 −x+1)]_0 ^1    +(5/6) ∫_0 ^1  (dx/(x^2 −x+1))  we have  ∫_0 ^1  (dx/(x^2 −x+1)) =∫_0 ^1  (dx/((x−(1/2))^2  +(3/4))) =_(x−(1/2)=((√3)/2)t) (4/3)   ∫_(−(1/( (√3)))) ^(1/( (√3)))      (1/(u^2  +1))((√3)/2)dt  =(2/( (√3)))[arctanu]_(−(1/( (√3)))) ^(1/( (√3)))    =(2/( (√3))){((2π)/6)} =((2π)/(3(√3))) ⇒ A =((ln2)/3)+(5/6).((2π)/(3(√3)))−(3/4)  ⇒A =((ln(2))/3) +((5π)/(9(√3)))−(3/4)  B =Σ_(n=2) ^∞  (((−1)^n )/(3n−2)) =_(n=p+1)    Σ_(p=1) ^∞  (((−1)^(p+1) )/(3p+1))  =−Σ_(n=1) ^∞  (((−1)^n )/(3n+1)) =−(Σ_(n=0) ^∞  (((−1)^n )/(3n+1))−1)=1−Σ_(n=0) ^∞  (((−1)^n )/(3n+1))  =1−(((ln(2))/3)+((5π)/(9(√3)))) ⇒  S =A +B =((ln(2))/3)+((5π)/(9(√3)))−(3/4) +1−((ln2)/3)−((5π)/(9(√3)))  ⇒ S =(1/4)
S=n=2(1)n3n+1+n=2(1)n3n2=A+BA=n=0(1)n3n+1(114)=34+n=0(1)n3n+1letφ(x)=n=0(1)nx3n+13n+1(x∣⩽1)φ(x)=n=0(1)nx3n=11+x3φ(x)=0xdx1+x3+c(c=φ(0)=0)F(x)=1(x+1)(x2x+1)=ax+1+bx+cx2x+1a=13,limx+xF(x)=0=a+bb=13F(0)=1=a+cc=113=23F(x)=13(x+1)+13x+23x2x+1A=01dxx3+1=13[lnx+1]0116012x11x2x+1dx+2301dxx2x+1=ln2316[ln(x2x+1)]01+5601dxx2x+1wehave01dxx2x+1=01dx(x12)2+34=x12=32t4313131u2+132dt=23[arctanu]1313=23{2π6}=2π33A=ln23+56.2π3334A=ln(2)3+5π9334B=n=2(1)n3n2=n=p+1p=1(1)p+13p+1=n=1(1)n3n+1=(n=0(1)n3n+11)=1n=0(1)n3n+1=1(ln(2)3+5π93)S=A+B=ln(2)3+5π9334+1ln235π93S=14
Commented by mathdave last updated on 28/Aug/20
good work
goodwork
Answered by mnjuly1970 last updated on 28/Aug/20
Commented by mathdave last updated on 28/Aug/20
keep the spirit up
keepthespiritup

Leave a Reply

Your email address will not be published. Required fields are marked *