Question Number 110222 by mathdave last updated on 28/Aug/20
![find the series Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n−2))]](https://www.tinkutara.com/question/Q110222.png)
Answered by mnjuly1970 last updated on 27/Aug/20
![find the series Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n+2))]](https://www.tinkutara.com/question/Q110229.png)
Answered by mathmax by abdo last updated on 28/Aug/20
![S =Σ_(n=2) ^∞ (((−1)^n )/(3n+1)) +Σ_(n=2) ^∞ (((−1)^n )/(3n−2)) =A +B A =Σ_(n=0) ^(∞ ) (((−1)^n )/(3n+1)) −(1−(1/4)) =−(3/4)+Σ_(n=0) ^∞ (((−1)^n )/(3n+1)) let ϕ(x) =Σ_(n=0) ^∞ (−1)^n (x^(3n+1) /(3n+1)) (∣x∣≤1) ϕ^′ (x) =Σ_(n=0) ^∞ (−1)^n x^(3n) =(1/(1+x^3 )) ⇒ϕ(x) =∫_0 ^x (dx/(1+x^3 )) +c (c=ϕ(0)=0) F(x) =(1/((x+1)(x^2 −x+1))) =(a/(x+1)) +((bx +c)/(x^2 −x+1)) a=(1/3) ,lim_(x→+∞) xF(x) =0 =a+b ⇒b=−(1/3) F(0) =1 =a +c ⇒c=1−(1/3) =(2/3) ⇒F(x)=(1/(3(x+1)))+((−(1/3)x+(2/3))/(x^2 −x+1)) A =∫_0 ^1 (dx/(x^3 +1)) =(1/3)[ln∣x+1∣]_0 ^1 −(1/6)∫_0 ^1 ((2x−1−1)/(x^2 −x+1))dx +(2/3)∫_0 ^1 (dx/(x^2 −x+1)) =((ln2)/3) −(1/6)[ln(x^2 −x+1)]_0 ^1 +(5/6) ∫_0 ^1 (dx/(x^2 −x+1)) we have ∫_0 ^1 (dx/(x^2 −x+1)) =∫_0 ^1 (dx/((x−(1/2))^2 +(3/4))) =_(x−(1/2)=((√3)/2)t) (4/3) ∫_(−(1/( (√3)))) ^(1/( (√3))) (1/(u^2 +1))((√3)/2)dt =(2/( (√3)))[arctanu]_(−(1/( (√3)))) ^(1/( (√3))) =(2/( (√3))){((2π)/6)} =((2π)/(3(√3))) ⇒ A =((ln2)/3)+(5/6).((2π)/(3(√3)))−(3/4) ⇒A =((ln(2))/3) +((5π)/(9(√3)))−(3/4) B =Σ_(n=2) ^∞ (((−1)^n )/(3n−2)) =_(n=p+1) Σ_(p=1) ^∞ (((−1)^(p+1) )/(3p+1)) =−Σ_(n=1) ^∞ (((−1)^n )/(3n+1)) =−(Σ_(n=0) ^∞ (((−1)^n )/(3n+1))−1)=1−Σ_(n=0) ^∞ (((−1)^n )/(3n+1)) =1−(((ln(2))/3)+((5π)/(9(√3)))) ⇒ S =A +B =((ln(2))/3)+((5π)/(9(√3)))−(3/4) +1−((ln2)/3)−((5π)/(9(√3))) ⇒ S =(1/4)](https://www.tinkutara.com/question/Q110345.png)
Commented by mathdave last updated on 28/Aug/20

Answered by mnjuly1970 last updated on 28/Aug/20

Commented by mathdave last updated on 28/Aug/20
