Question Number 184893 by mnjuly1970 last updated on 13/Jan/23
$$ \\ $$$$\:\:\:\:{find}\:{the}\:{set}\:{of}\: \\ $$$$\:\:\:\:{critical}\:{points}\:{for}: \\ $$$$\:\:\:\mathrm{1}:\:\:\:{f}\:\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor+\lfloor\:−{x}\rfloor}\:−{x}\:\:\:\: \\ $$$$\:\:\:\:\mathrm{2}\::\:\:{g}\left({x}\right)\:=\:\frac{{x}}{\lfloor\:{x}\:\rfloor\:+\lfloor\:−{x}\:\rfloor}\:+{x} \\ $$
Answered by Mathspace last updated on 13/Jan/23
$$\left.\mathrm{1}\right)\:{x}\:{in}\:{Z}\:\Rightarrow\left[{x}\right]+\left[−{x}\right]=\mathrm{0}\Rightarrow{f}\:{is}\:{not}\:{defined} \\ $$$${x}\:\notin{Z}\:\Rightarrow\left[{x}\right]+\left[−{x}\right]=−\mathrm{1}\:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{{x}}{−\mathrm{1}}−{x}=−\mathrm{2}{x} \\ $$$${any}\:{way}\:{we}\:{have}\:{D}_{{f}} ={R}−{Z} \\ $$$$\left.\mathrm{2}\right){g}\left({x}\right){not}\:{defined}\:{for}\:{x}\:\in{Z} \\ $$$${and}\:{for}\:{x}\notin{Z}\:\:{g}\left({x}\right)=\frac{{x}}{−\mathrm{1}}+{x}=\mathrm{0} \\ $$$$\Rightarrow{D}_{{g}} ={R}−{Z} \\ $$
Commented by mnjuly1970 last updated on 19/Jan/23
$${thx}\:{alot} \\ $$