Menu Close

Find-the-set-of-values-of-x-0-2pi-which-satisfy-sin-x-gt-cos-x-1-pi-4-3pi-4-5pi-4-2pi-2-0-pi-4-5pi-4-2pi-3-pi-4-5pi-4-4-0-3pi-4-5pi-4-2pi-




Question Number 16092 by Tinkutara last updated on 17/Jun/17
Find the set of values of x ∈ [0, 2π]  which satisfy sin x > cos x.  (1) ((π/4), ((3π)/4)) ∪ (((5π)/4), 2π)  (2) (0, (π/4)) ∪ (((5π)/4), 2π)  (3) ((π/4), ((5π)/4))  (4) (0, ((3π)/4)) ∪ (((5π)/4), 2π)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{2}\pi\right] \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\mathrm{sin}\:{x}\:>\:\mathrm{cos}\:{x}. \\ $$$$\left(\mathrm{1}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{3}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right) \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{0},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$
Commented by Tinkutara last updated on 19/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$
Commented by mrW1 last updated on 17/Jun/17
(3)
$$\left(\mathrm{3}\right) \\ $$
Commented by Tinkutara last updated on 18/Jun/17
Can you explain please?
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{please}? \\ $$
Commented by mrW1 last updated on 18/Jun/17
sin x−cos x>0  (√2)((1/( (√2)))sin x−(1/( (√2)))cos x)>0  (√2)sin (x−(π/4))>0  sin (x−(π/4))>0  ⇒0<x−(π/4)<π  (π/4)<x<((5π)/4)
$$\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}>\mathrm{0} \\ $$$$\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{cos}\:\mathrm{x}\right)>\mathrm{0} \\ $$$$\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)>\mathrm{0} \\ $$$$\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)>\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}<\mathrm{x}−\frac{\pi}{\mathrm{4}}<\pi \\ $$$$\frac{\pi}{\mathrm{4}}<\mathrm{x}<\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$
Commented by mrW1 last updated on 18/Jun/17
or you just have a look at the graphs  from sin x and cos x.
$$\mathrm{or}\:\mathrm{you}\:\mathrm{just}\:\mathrm{have}\:\mathrm{a}\:\mathrm{look}\:\mathrm{at}\:\mathrm{the}\:\mathrm{graphs} \\ $$$$\mathrm{from}\:\mathrm{sin}\:\mathrm{x}\:\mathrm{and}\:\mathrm{cos}\:\mathrm{x}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *