Menu Close

Find-the-set-of-values-of-x-which-satisfy-the-inequalities-2-x-1-1-x-and-x-2-3x-2-lt-0-




Question Number 63162 by Rio Michael last updated on 29/Jun/19
Find the set of values of x which satisfy the inequalities   (2/(x−1))≤(1/x)  and  x^2 −∣3x∣+2<0
Findthesetofvaluesofxwhichsatisfytheinequalities2x11xandx23x+2<0
Commented by Prithwish sen last updated on 30/Jun/19
(2/(x−1))≤(1/x) ⇒x≤−1  x^2 −∣3x∣ +2 <0  ⇒ x^2 +3x+2< 0 ( ∵ x≤−1)  i.e (x+1)(x+2)< 0  either                             or    (x+1)<0                       (x+1)>0  and(x+2)>0              and (x+2)< 0  ⇒ −2<x<−1              ⇒ −1<x<−2   ∵ x≤ −1  ∴  the only possible solution is                                       −2<x<−1  please check the answer.
2x11xx1x23x+2<0x2+3x+2<0(x1)i.e(x+1)(x+2)<0eitheror(x+1)<0(x+1)>0and(x+2)>0and(x+2)<02<x<11<x<2x1theonlypossiblesolutionis2<x<1pleasechecktheanswer.
Commented by Rio Michael last updated on 02/Jul/19
i think it makes sense..but explicit for O level students u know..  A level students can understand
ithinkitmakessense..butexplicitforOlevelstudentsuknow..Alevelstudentscanunderstand
Commented by mathmax by abdo last updated on 30/Jun/19
(e_1 ) for x≠0 and x≠1    (2/(x−1)) ≤(1/x) ⇔(2/(x−1)) −(1/x) ≤0 ⇒((2x−x+1)/(x(x−1))) ≤0 ⇒  ((x+1)/(x(x−1))) ≤0  x          −∞                 −1                  0                1               +∞  x+1                     −        0        +                 +              +  x(x−1)              +                     +     0         −    0       +  ((x+1)/(x(x−1)    ))         −                     +               −                 +  ⇒ D_1 = ]−∞ ,−1] ∪  ]0,1[  (e_2 )           x^2 −3∣x∣ +2 <0 ⇒∣x∣−3∣x∣ +2 <0  Δ =9−8 =1  ⇒ ∣x∣_1 =((3+1)/2) =2 ⇒x =+^− 2  ∣x∣_2 =((3−1)/2) =1 ⇒x =+^− 1 ⇒x^2 −3∣x∣+2 =(∣x∣−1)(∣x∣−2)  (e_2 ) ⇒ (∣x∣−1)(∣x∣−2) <0  ⇒∣x∣ ∈]1,2[ ⇒ 1<∣x∣<2                 1<∣x∣ ⇒x>1 or x<−1 ⇒x ∈]−∞,−1[∪]1,+∞[  ∣x∣<2 ⇒−2<x<2 ⇒ ∩ =]−2,−1[∪]1,2[ =D_2  ⇒  D =D_1 ∩D_2 =....
(e1)forx0andx12x11x2x11x02xx+1x(x1)0x+1x(x1)0x101+x+10+++x(x1)++00+x+1x(x1)++D1=],1]]0,1[(e2)x23x+2<0⇒∣x3x+2<0Δ=98=1x1=3+12=2x=+2x2=312=1x=+1x23x+2=(x1)(x2)(e2)(x1)(x2)<0⇒∣x]1,2[1<∣x∣<21<∣xx>1orx<1x],1[]1,+[x∣<22<x<2=]2,1[]1,2[=D2D=D1D2=.
Answered by ajfour last updated on 30/Jun/19
   1<∣x∣<2      { ((1<x<2)),((x ≤−1)) :}      or     { ((−2<x<−1)),((x ≤−1)) :}  ⇒  x∈φ            or   ⇒ −2< x <−1  hence  x∈(−1,−2).
1<∣x∣<2{1<x<2x1or{2<x<1x1xϕor2<x<1hencex(1,2).

Leave a Reply

Your email address will not be published. Required fields are marked *