Question Number 37777 by rahul 19 last updated on 17/Jun/18
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{curves}\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{30}{y}+\mathrm{16}=\mathrm{0}\:{and} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:. \\ $$
Answered by MJS last updated on 17/Jun/18
$$\mathrm{like}\:\mathrm{the}\:\mathrm{similar}\:\mathrm{one}\:\mathrm{you}\:\mathrm{posted}\:\mathrm{earlier} \\ $$$$\mathrm{circle}:\:{x}^{\mathrm{2}} +\left({y}−\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{1};\:\mathrm{center}\:{C}=\begin{pmatrix}{\mathrm{0}}\\{\frac{\mathrm{5}}{\mathrm{3}}}\end{pmatrix} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{point}\:{P}=\begin{pmatrix}{{x}}\\{\pm\sqrt{{x}^{\mathrm{3}} }}\end{pmatrix}\:\mathrm{with} \\ $$$$\mid{CP}\mid\:\mathrm{minimal} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{3}}\pm\sqrt{{x}^{\mathrm{3}} }\right)^{\mathrm{2}} ={x}^{\mathrm{3}} +{x}^{\mathrm{2}} \pm\frac{\mathrm{10}}{\mathrm{3}}\sqrt{{x}^{\mathrm{3}} }+\frac{\mathrm{25}}{\mathrm{9}} \\ $$$${f}'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}\pm\mathrm{5}\sqrt{{x}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}\sqrt{{x}}=\mathrm{0}\:\Rightarrow\:{x}_{\mathrm{1}} =\mathrm{0};\:{x}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\sqrt{{x}}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\frac{\mathrm{25}}{\mathrm{9}} \\ $$$${f}\left(\mathrm{1}\right)=\frac{\mathrm{73}}{\mathrm{9}}\:\mathrm{or}\:\frac{\mathrm{13}}{\mathrm{9}} \\ $$$$\Rightarrow\:\mathrm{minimal}\:\mathrm{distance}\:\mid{CP}\mid=\frac{\sqrt{\mathrm{13}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{minimal}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{curves}=\frac{\sqrt{\mathrm{13}}}{\mathrm{3}}−\mathrm{1} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18
$${excellent}\:{sir} \\ $$
Commented by MJS last updated on 17/Jun/18
$$\frac{\sqrt{\mathrm{13}}}{\mathrm{3}}−\mathrm{1}\approx.\mathrm{20185} \\ $$$$.\mathrm{2}\sqrt{\mathrm{2}}\approx.\mathrm{28284}\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{good}\:\mathrm{estimate} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18
$${shortest}\:{distance}…{see}\left(\mathrm{0}.\mathrm{8},\mathrm{1}\right)\:{lies}\:{on}\:{circle}… \\ $$$${distance}\:{from}\:\left(\mathrm{0}.\mathrm{8},\mathrm{1}\right)\approx{half}\:{diagonal}\:{of}\:{the} \\ $$$${smallest}\:{squre}\:\:\frac{\mathrm{1}}{\mathrm{2}}×\sqrt{\left(\mathrm{0}.\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{0}.\mathrm{2}\right)^{\mathrm{2}} }\:….{pls}\:{comment} \\ $$