Menu Close

Find-the-shortest-distance-between-the-lines-L-1-4-2-N-1-3-2-and-r-1-1-1-1-2-1-




Question Number 56697 by Tawa1 last updated on 21/Mar/19
Find the shortest distance between the lines     L  =  (1, 4, 2) + N(1, 3, 2)   and     r  =  (−1, 1, −1) + λ(1, 2, −1)
FindtheshortestdistancebetweenthelinesL=(1,4,2)+N(1,3,2)andr=(1,1,1)+λ(1,2,1)
Answered by mr W last updated on 21/Mar/19
many methods to solve.    d^2 =[1+N−(−1+λ)]^2 +[4+3N−(1+2λ)]^2 +[2+2N−(−1−λ)]^2   d^2 =(2+N−λ)^2 +(3+3N−2λ)^2 +(3+2N+λ)^2    ...(iii)  ((∂(d^2 ))/∂N)=2(2+N−λ)+2×3(3+3N−2λ)+2×2(3+2N+λ)=0  ⇒14N−5λ+17=0   ...(i)  ((∂(d^2 ))/∂λ)=−2(2+N−λ)−2×2(3+3N−2λ)+2(3+2N+λ)=0  ⇒5N−6λ+5=0   ...(ii)    solve (i) and (ii):  ⇒N=−((77)/(59))  ⇒λ=−((15)/(59))    put this into (iii):  d_(min) ^2 =(((56)/(59)))^2 +(((−24)/(59)))^2 +((8/(59)))^2   ⇒d_(min) =((√(56^2 +24^2 +8^2 ))/(59))=(8/( (√(59))))=1.0415
manymethodstosolve.d2=[1+N(1+λ)]2+[4+3N(1+2λ)]2+[2+2N(1λ)]2d2=(2+Nλ)2+(3+3N2λ)2+(3+2N+λ)2(iii)(d2)N=2(2+Nλ)+2×3(3+3N2λ)+2×2(3+2N+λ)=014N5λ+17=0(i)(d2)λ=2(2+Nλ)2×2(3+3N2λ)+2(3+2N+λ)=05N6λ+5=0(ii)solve(i)and(ii):N=7759λ=1559putthisinto(iii):dmin2=(5659)2+(2459)2+(859)2dmin=562+242+8259=859=1.0415
Commented by Tawa1 last updated on 22/Mar/19
Wow,  God bless you sir.
Wow,Godblessyousir.
Answered by mr W last updated on 23/Mar/19
vector method    normal to L and r:  (1,3,2)×(1,2,−1)=(−7,3,−1)    (1+1,4−1,2+1)=(2,3,3)    (2,3,3)•(−7,3,−1)=−14+9−3=−8    d=((∣−8∣)/( (√((−7)^2 +3^2 +(−1)^2 ))))=(8/( (√(59))))≈1.0415
vectormethodnormaltoLandr:(1,3,2)×(1,2,1)=(7,3,1)(1+1,41,2+1)=(2,3,3)(2,3,3)(7,3,1)=14+93=8d=8(7)2+32+(1)2=8591.0415
Commented by Tawa1 last updated on 24/Mar/19
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *