Menu Close

Find-the-shortest-distance-from-the-origin-to-the-curve-xy-3-




Question Number 28198 by NECx last updated on 21/Jan/18
Find the shortest distance from  the origin to the curve xy=3
$${Find}\:{the}\:{shortest}\:{distance}\:{from} \\ $$$${the}\:{origin}\:{to}\:{the}\:{curve}\:{xy}=\mathrm{3} \\ $$
Answered by mrW2 last updated on 22/Jan/18
distance of point (x,y) to the origin is r.  r^2 =x^2 +y^2   xy=3  ⇒r^2 =x^2 +(9/x^2 )≥2(√(x^2 ×(9/x^2 )))=6    (AM≥GM)  ⇒r_(min) =(√6)
$${distance}\:{of}\:{point}\:\left({x},{y}\right)\:{to}\:{the}\:{origin}\:{is}\:{r}. \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${xy}=\mathrm{3} \\ $$$$\Rightarrow{r}^{\mathrm{2}} ={x}^{\mathrm{2}} +\frac{\mathrm{9}}{{x}^{\mathrm{2}} }\geqslant\mathrm{2}\sqrt{{x}^{\mathrm{2}} ×\frac{\mathrm{9}}{{x}^{\mathrm{2}} }}=\mathrm{6}\:\:\:\:\left({AM}\geqslant{GM}\right) \\ $$$$\Rightarrow{r}_{{min}} =\sqrt{\mathrm{6}} \\ $$
Commented by math solver last updated on 22/Jan/18
nice !
$${nice}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *