Menu Close

Find-the-shortest-distance-from-the-origin-to-the-hyperbola-x-2-8xy-7y-2-225-z-0-




Question Number 144534 by imjagoll last updated on 26/Jun/21
Find the shortest distance from   the origin to the hyperbola   x^2 +8xy+7y^2 =225 ,z=0
Findtheshortestdistancefromtheorigintothehyperbolax2+8xy+7y2=225,z=0
Answered by liberty last updated on 26/Jun/21
we must find the minimum value  of x^2 +y^2  (the square of the distance  from the origin to any point in  the xy plane) subject to constraint  x^2 +8xy+7y^2 =225  by Langrange multiplier  ∅=x^2 +8xy+7y^2 +λ(x^2 +y^2 )  ∅_x =2x+8y+2λx=0 or (λ+1)x+4y=0  φ_y =8x+14y+2λy=0 or 4x+(λ+7)y=0   determinant (((λ+1     4)),((   4    λ+7)))=0 → { ((λ=−9)),((λ=1)) :}  when λ=−9 we get y=2x and   substitution in x^2 +8xy+7y^2 =225  yields x^2 =5, y^2 =20 so the shortest  distance is (√(5+20))=5  when λ=1 give x=−2y and   substitution in x^2 +8xy+7y^2 =225  yields −5y^2 =225 for which no  real solution exists.
wemustfindtheminimumvalueofx2+y2(thesquareofthedistancefromtheorigintoanypointinthexyplane)subjecttoconstraintx2+8xy+7y2=225byLangrangemultiplier=x2+8xy+7y2+λ(x2+y2)x=2x+8y+2λx=0or(λ+1)x+4y=0ϕy=8x+14y+2λy=0or4x+(λ+7)y=0|λ+144λ+7|=0{λ=9λ=1whenλ=9wegety=2xandsubstitutioninx2+8xy+7y2=225yieldsx2=5,y2=20sotheshortestdistanceis5+20=5whenλ=1givex=2yandsubstitutioninx2+8xy+7y2=225yields5y2=225forwhichnorealsolutionexists.
Answered by mr W last updated on 26/Jun/21
r=distance from (0,0) to (x,y)  x=r cos θ  y=r sin θ  r^2 cos^2  θ+8r^2 cos θ sin θ+7r^2 sin^2  θ=225  r^2 (4+4sin 2θ−3cos 2θ)=225  r^2 =((225)/(4+5 sin (2θ−tan^(−1) (3/4))))≥((225)/(4+5))  ⇒r_(min) =(√((225)/9))=5
r=distancefrom(0,0)to(x,y)x=rcosθy=rsinθr2cos2θ+8r2cosθsinθ+7r2sin2θ=225r2(4+4sin2θ3cos2θ)=225r2=2254+5sin(2θtan134)2254+5rmin=2259=5

Leave a Reply

Your email address will not be published. Required fields are marked *