Menu Close

Find-the-side-lengths-of-a-triangle-if-side-lengths-are-consecutive-integers-and-one-of-whose-angles-is-twice-as-large-as-another-




Question Number 18968 by chux last updated on 02/Aug/17
Find the side lengths of a triangle  if side lengths are consecutive   integers,and one of whose angles  is twice as large as another.
Findthesidelengthsofatriangleifsidelengthsareconsecutiveintegers,andoneofwhoseanglesistwiceaslargeasanother.
Commented by chux last updated on 02/Aug/17
please help
pleasehelp
Answered by mrW1 last updated on 03/Aug/17
a=n−1  b=n  c=n+1    case 1:  A=α  C=2α  B=180−3α  ((sin A)/a)=((sin B)/b)=((sin C)/c)  ((sin α)/(n−1))=((sin (3α))/n)=((sin (2α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/(n+1))  ((sin (3α))/(sin α))=((3 sin α−4 sin^3  α)/(sin α))=3−4sin^2  α=(2cos α)^2 −1=(n/(n−1))  (((n+1)/(n−1)))^2 −1=(n/(n−1))  (((n+1)/(n−1))+1)(((n+1)/(n−1))−1)=(n/(n−1))  (4/(n−1))=1  ⇒n=5  ⇒sides of triangle =4,5,6    case 2:  ((sin α)/(n−1))=((sin (2α))/n)=((sin (3α))/(n+1))  ((sin (2α))/(sin α))=2cos α=(n/(n−1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n+1)/(n−1))  ((n/(n−1))−1)((n/(n−1))+1)=((n+1)/(n+1))  ((2n−1)/(n−1))=n+1  ⇒n=2 (not suitable, it′s a straight)    case 3:  ((sin (3α))/(n−1))=((sin α)/n)=((sin (2α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n+1)/n)  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n−1)/n)  (((n+1)/n)−1)(((n+1)/n)+1)=((n−1)/n)  ⇒n=−2 <0 (not suitable)    case 4:  ((sin (3α))/(n−1))=((sin (2α))/n)=((sin α)/(n+1))  ((sin (2α))/(sin α))=2cos α=(n/(n+1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n−1)/(n+1))  ((n/(n+1))−1)((n/(n+1))+1)=((n−1)/(n+1))  ⇒n=−2<0 (not suitable)    case 5:  ((sin (2α))/(n−1))=((sin α)/n)=((sin (3α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/n)  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n+1)/n)  (((n−1)/n)+1)(((n−1)/n)−1)=((n+1)/n)  n=−2<0 (not suitable)    case 6:  ((sin (2α))/(n−1))=((sin (3α))/n)=((sin α)/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/(n+1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=(n/(n+1))  (((n−1)/(n+1))+1)(((n−1)/(n+1))−1)=(n/(n+1))  ((−4)/(n+1))=1  ⇒n=−5<0 (not suitable)    ⇒the only solution is:  4,5,6
a=n1b=nc=n+1case1:A=αC=2αB=1803αsinAa=sinBb=sinCcsinαn1=sin(3α)n=sin(2α)n+1sin(2α)sinα=2cosα=n1n+1sin(3α)sinα=3sinα4sin3αsinα=34sin2α=(2cosα)21=nn1(n+1n1)21=nn1(n+1n1+1)(n+1n11)=nn14n1=1n=5sidesoftriangle=4,5,6case2:sinαn1=sin(2α)n=sin(3α)n+1sin(2α)sinα=2cosα=nn1sin(3α)sinα=(2cosα)21=n+1n1(nn11)(nn1+1)=n+1n+12n1n1=n+1n=2(notsuitable,itsastraight)case3:sin(3α)n1=sinαn=sin(2α)n+1sin(2α)sinα=2cosα=n+1nsin(3α)sinα=(2cosα)21=n1n(n+1n1)(n+1n+1)=n1nn=2<0(notsuitable)case4:sin(3α)n1=sin(2α)n=sinαn+1sin(2α)sinα=2cosα=nn+1sin(3α)sinα=(2cosα)21=n1n+1(nn+11)(nn+1+1)=n1n+1n=2<0(notsuitable)case5:sin(2α)n1=sinαn=sin(3α)n+1sin(2α)sinα=2cosα=n1nsin(3α)sinα=(2cosα)21=n+1n(n1n+1)(n1n1)=n+1nn=2<0(notsuitable)case6:sin(2α)n1=sin(3α)n=sinαn+1sin(2α)sinα=2cosα=n1n+1sin(3α)sinα=(2cosα)21=nn+1(n1n+1+1)(n1n+11)=nn+14n+1=1n=5<0(notsuitable)theonlysolutionis:4,5,6
Commented by chux last updated on 03/Aug/17
but B=3α
butB=3α
Commented by ajfour last updated on 03/Aug/17
The same here. Thank you Sir.
Thesamehere.ThankyouSir.
Commented by chux last updated on 02/Aug/17
wow..... this is amazing!  i m most grateful sir.
wow..thisisamazing!immostgratefulsir.
Commented by mrW1 last updated on 03/Aug/17
since we don′t know which angle is  as double so large as which other angle,  we must try out all 6 possibilities:  A=α, B=2α, C=180−3α  A=α, B=180−3α, C=2α  A=2α, B=α, C=180−3α  A=180−3α, B=α, C=2α  A=2α, B=180−3α, C=α  A=180−3α, B=2α, C=α    note: sin (180−3α)=sin (3α)
sincewedontknowwhichangleisasdoublesolargeaswhichotherangle,wemusttryoutall6possibilities:A=α,B=2α,C=1803αA=α,B=1803α,C=2αA=2α,B=α,C=1803αA=1803α,B=α,C=2αA=2α,B=1803α,C=αA=1803α,B=2α,C=αnote:sin(1803α)=sin(3α)
Commented by chux last updated on 03/Aug/17
i′ve understood it now... its clear  sir.
iveunderstooditnowitsclearsir.
Commented by chux last updated on 04/Aug/17
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *