Menu Close

Find-the-simplest-form-of-k-1-n-2-k-sin-2-2kpi-3-1-4-




Question Number 21825 by Joel577 last updated on 05/Oct/17
Find the simplest form of  Σ_(k = 1) ^n 2^k [sin^2  (((2kπ)/3)) + (1/4)]
Findthesimplestformofnk=12k[sin2(2kπ3)+14]
Commented by sma3l2996 last updated on 05/Oct/17
   we have : sin(((2kπ)/3))=sin(((2π)/3))  so  Σ_(k=1) ^n 2^k (sin^2 (((2kπ)/3))+(1/4))=Σ_(k=1) ^n 2^k (sin^2 ((2π)/3)+(1/4))  =Σ_(k=1) ^n 2^k ((((√3)/2))^2 +(1/4))=Σ_(k=1) ^n 2^k ((3/4)+(1/4))  =Σ_(k=1) ^n 2^k   let   a_k =2^k =a_1 q^(k−1) =2×2^(k−1)   so  q=a_1 =2  let  S_n =a_1 +a_2 +...+a_n =((a_1 (q^n −1))/(q−1))  S_n =Σ_(k=0) ^n 2^k =((2(2^n −1))/(2−1))=2(2^n −1)  so  Σ_(k=0) ^n 2^k (sin^2 (((2kπ)/3))+(1/4))=2^(n+1) −2
wehave:sin(2kπ3)=sin(2π3)sonk=12k(sin2(2kπ3)+14)=nk=12k(sin22π3+14)=nk=12k((32)2+14)=nk=12k(34+14)=nk=12kletak=2k=a1qk1=2×2k1soq=a1=2letSn=a1+a2++an=a1(qn1)q1Sn=nk=02k=2(2n1)21=2(2n1)sonk=02k(sin2(2kπ3)+14)=2n+12
Commented by Joel577 last updated on 05/Oct/17
but if k = 3, then sin^2  (((6π)/3)) ≠ sin^2  (((2π)/3))
butifk=3,thensin2(6π3)sin2(2π3)

Leave a Reply

Your email address will not be published. Required fields are marked *