Menu Close

find-the-sin-1-diferentiation-




Question Number 20205 by vivek last updated on 24/Aug/17
find the sin^(−1)  diferentiation
$${find}\:{the}\:{sin}^{−\mathrm{1}} \:{diferentiation} \\ $$
Answered by Joel577 last updated on 24/Aug/17
y = sin^(−1)  (x)  x = sin y  (dx/dy) = cos y = (√(1 − sin^2  y))  (dy/dx) = (1/(cos y)) = (1/( (√(1 − sin^2  y)))) = (1/( (√(1 − x^2 ))))
$${y}\:=\:\mathrm{sin}^{−\mathrm{1}} \:\left({x}\right) \\ $$$${x}\:=\:\mathrm{sin}\:{y} \\ $$$$\frac{{dx}}{{dy}}\:=\:\mathrm{cos}\:{y}\:=\:\sqrt{\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \:{y}} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{cos}\:{y}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \:{y}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *