Menu Close

find-the-slope-for-the-curve-r-3-sin-2-at-pi-4-




Question Number 87130 by jagoll last updated on 03/Apr/20
find the slope for the curve   r = 3 sin 2θ at θ =(π/4) ?
$$\mathrm{find}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{for}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{r}\:=\:\mathrm{3}\:\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{at}\:\theta\:=\frac{\pi}{\mathrm{4}}\:? \\ $$
Commented by mr W last updated on 03/Apr/20
y=r sin θ=3 sin 2θ sin θ  x=r cos θ=3 sin 2θ cos θ  (dy/dx)=(dy/dθ)×(1/(dx/dθ))=((sin 2θ cos θ+2 cos 2θ sin θ)/(−sin 2θ sin θ+2 cos 2θ cos θ))  =((1×((√2)/2)+2×0×((√2)/2))/(−1×((√2)/2)+2×0×((√2)/2)))=−1
$${y}={r}\:\mathrm{sin}\:\theta=\mathrm{3}\:\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{sin}\:\theta \\ $$$${x}={r}\:\mathrm{cos}\:\theta=\mathrm{3}\:\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{cos}\:\theta \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{d}\theta}×\frac{\mathrm{1}}{\frac{{dx}}{{d}\theta}}=\frac{\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{cos}\:\theta+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{sin}\:\theta}{−\mathrm{sin}\:\mathrm{2}\theta\:\mathrm{sin}\:\theta+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{cos}\:\theta} \\ $$$$=\frac{\mathrm{1}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\mathrm{2}×\mathrm{0}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{−\mathrm{1}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\mathrm{2}×\mathrm{0}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=−\mathrm{1} \\ $$
Commented by mr W last updated on 03/Apr/20
Commented by john santu last updated on 03/Apr/20
sir joggal. do you mean the curve  in polar coordinate ?
$$\mathrm{sir}\:\mathrm{joggal}.\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{in}\:\mathrm{polar}\:\mathrm{coordinate}\:? \\ $$
Commented by jagoll last updated on 03/Apr/20
yes mister john
$$\mathrm{yes}\:\mathrm{mister}\:\mathrm{john} \\ $$
Commented by jagoll last updated on 03/Apr/20
thank you mr w
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{w} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *